Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evidence for Efimov quantum states in an ultracold gas of caesium atoms

Abstract

Systems of three interacting particles are notorious for their complex physical behaviour. A landmark theoretical result in few-body quantum physics is Efimov's prediction1,2 of a universal set of bound trimer states appearing for three identical bosons with a resonant two-body interaction. Counterintuitively, these states even exist in the absence of a corresponding two-body bound state. Since the formulation of Efimov's problem in the context of nuclear physics 35 years ago, it has attracted great interest in many areas of physics3,4,5,6,7,8. However, the observation of Efimov quantum states has remained an elusive goal3,5. Here we report the observation of an Efimov resonance in an ultracold gas of caesium atoms. The resonance occurs in the range of large negative two-body scattering lengths, arising from the coupling of three free atoms to an Efimov trimer. Experimentally, we observe its signature as a giant three-body recombination loss9,10 when the strength of the two-body interaction is varied. We also detect a minimum9,11,12 in the recombination loss for positive scattering lengths, indicating destructive interference of decay pathways. Our results confirm central theoretical predictions of Efimov physics and represent a starting point with which to explore the universal properties of resonantly interacting few-body systems7. While Feshbach resonances13,14 have provided the key to control quantum-mechanical interactions on the two-body level, Efimov resonances connect ultracold matter15 to the world of few-body quantum phenomena.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Efimov's scenario.
Figure 2: Observation of the Efimov resonance in measurements of three-body recombination.
Figure 3: Atom loss for small scattering lengths.

Similar content being viewed by others

References

  1. Efimov, V. Energy levels arising from resonant two-body forces in a three-body system. Phys. Lett. B. 33, 563–564 (1970)

    Article  ADS  CAS  Google Scholar 

  2. Efimov, V. Weakly-bound states of three resonantly-interacting particles. Sov. J. Nucl. Phys. 12, 589–595 (1971)

    Google Scholar 

  3. Jensen, A. S., Riisager, K., Fedorov, D. V. & Garrido, E. Structure and reactions of quantum halos. Rev. Mod. Phys. 76, 215–261 (2004)

    Article  ADS  CAS  Google Scholar 

  4. Lim, T. K., Duffy, K. & Damer, W. C. Efimov state in the 4He trimer. Phys. Rev. Lett. 38, 341–343 (1977)

    Article  ADS  CAS  Google Scholar 

  5. Brühl, R. et al. Matter wave diffraction from an inclined transmission grating: Searching for the elusive 4He trimer Efimov state. Phys. Rev. Lett. 95, 063002 (2005)

    Article  ADS  PubMed  Google Scholar 

  6. Braaten, E., Hammer, H.-W. & Kusunoki, M. Efimov states in a Bose-Einstein condensate near a Feshbach resonance. Phys. Rev. Lett. 90, 170402 (2003)

    Article  ADS  PubMed  Google Scholar 

  7. Braaten, E. & Hammer, H.-W. Universality in few-body systems with large scattering length. Preprint at http://arXiv.org/abs/cond-mat/0410417 (2004).

  8. Stoll, M. & Köhler, T. Production of three-body Efimov molecules in an optical lattice. Phys. Rev. A 72, 022714 (2005)

    Article  ADS  Google Scholar 

  9. Esry, B. D., Greene, C. H. & Burke, J. P. Jr Recombination of three atoms in the ultracold limit. Phys. Rev. Lett. 83, 1751–1754 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Braaten, E. & Hammer, H.-W. Three-body recombination into deep bound states in a Bose gas with large scattering length. Phys. Rev. Lett. 87, 160407 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Nielsen, E. & Macek, J. H. Low-energy recombination of identical bosons by three-body collisions. Phys. Rev. Lett. 83, 1566–1569 (1999)

    Article  ADS  CAS  Google Scholar 

  12. Bedaque, P. F., Braaten, E. & Hammer, H.-W. Three-body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 85, 908–911 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Inouye, S. et al. Observation of Feshbach resonances in a Bose–Einstein condensate. Nature 392, 151–154 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Southwell, K. (ed.) Ultracold matter Nature (Insight) 416, 205–246 (2002).

  16. Efimov, V. Low-energy properties of three resonantly interacting particles. Sov. J. Nucl. Phys. 29, 546–553 (1979)

    Google Scholar 

  17. Bringas, F., Yamashita, M. T. & Frederico, T. Triatomic continuum resonances for large negative scattering lengths. Phys. Rev. A 69, 040702(R) (2004)

    Article  ADS  Google Scholar 

  18. Nielsen, E., Suno, H. & Esry, B. D. Efimov resonances in atom-diatom scattering. Phys. Rev. A 66, 012705 (2002)

    Article  ADS  Google Scholar 

  19. D'Incao, J. P., Suno, H. & Esry, B. D. Limits on universality in ultracold three-boson recombination. Phys. Rev. Lett. 93, 123201 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Weber, T., Herbig, J., Mark, M., Nägerl, H.-C. & Grimm, R. Three-body recombination at large scattering lengths in an ultracold atomic gas. Phys. Rev. Lett. 91, 123201 (2003)

    Article  ADS  PubMed  Google Scholar 

  21. Fedichev, P. O., Reynolds, M. W. & Shlyapnikov, G. V. Three-body recombination of ultracold atoms to a weakly bound s level. Phys. Rev. Lett. 77, 2921–2924 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Chin, C. et al. Precision Feshbach spectroscopy of ultracold Cs2 . Phys. Rev. A 70, 032701 (2004)

    Article  ADS  Google Scholar 

  23. Bolda, E. L., Tiesinga, E. & Julienne, P. S. Effective-scattering-length model of ultracold atomic collisions and Feshbach resonances in tight harmonic traps. Phys. Rev. A 66, 013403 (2002)

    Article  ADS  Google Scholar 

  24. Kraemer, T. et al. Optimized production of a cesium Bose-Einstein condensate. Appl. Phys. B 79, 1013–1019 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Köhler, T., Goral, K. & Julienne, P. S. Production of cold molecules via magnetically tunable Feshbach resonances. Preprint at http://arxiv.org/abs/cond-mat/0601420 (2006).

  26. Kartavtsev, O. I. & Macek, J. H. Low-energy three-body recombination near a Feshbach resonance. Few-Body Syst. 31, 249–254 (2002)

    Article  ADS  Google Scholar 

  27. Petrov, D. S. Three-boson problem near a narrow Feshbach resonance. Phys. Rev. Lett. 93, 143201 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Rychtarik, D., Engeser, B., Nägerl, H.-C. & Grimm, R. Two-dimensional Bose-Einstein condensate in an optical surface trap. Phys. Rev. Lett. 92, 173003 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Donley, E. A. et al. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 412, 295–299 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Thomas, L. H. The interaction between a neutron and a proton and the structure of H3. Phys. Rev. 47, 903–909 (1935)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Braaten, C. Greene, B. Esry, H. Hammer and T. Köhler for many discussions and E. Kneringer for support regarding the data analysis. We acknowledge support by the Austrian Science Fund (FWF) within Spezialforschungsbereich 15 and within the Lise Meitner programme, and by the European Union in the frame of the TMR networks ‘Cold Molecules’ and ‘FASTNet’. M.M. is supported within the Doktorandenprogramm of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.-C. Nägerl.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraemer, T., Mark, M., Waldburger, P. et al. Evidence for Efimov quantum states in an ultracold gas of caesium atoms. Nature 440, 315–318 (2006). https://doi.org/10.1038/nature04626

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04626

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing