Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An aluminium nitride light-emitting diode with a wavelength of 210 nanometres

Abstract

Compact high-efficiency ultraviolet solid-state light sources1—such as light-emitting diodes (LEDs) and laser diodes—are of considerable technological interest as alternatives to large, toxic, low-efficiency gas lasers and mercury lamps. Microelectronic fabrication technologies and the environmental sciences both require light sources with shorter emission wavelengths: the former for improved resolution in photolithography and the latter for sensors that can detect minute hazardous particles. In addition, ultraviolet solid-state light sources are also attracting attention for potential applications in high-density optical data storage, biomedical research, water and air purification, and sterilization. Wide-bandgap materials, such as diamond2 and III–V nitride semiconductors (GaN, AlGaN and AlN; refs 3–10), are potential materials for ultraviolet LEDs and laser diodes, but suffer from difficulties in controlling electrical conduction. Here we report the successful control of both n-type and p-type doping in aluminium nitride (AlN), which has a very wide direct bandgap11 of 6 eV. This doping strategy allows us to develop an AlN PIN (p-type/intrinsic/n-type) homojunction LED with an emission wavelength of 210 nm, which is the shortest reported to date for any kind of LED. The emission is attributed to an exciton transition, and represents an important step towards achieving exciton-related light-emitting devices as well as replacing gas light sources with solid-state light sources.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical characteristics of n-type Si-doped AlN.
Figure 2: Electrical characteristics of p-type Mg-doped AlN.
Figure 3: AlN LEDs.

Similar content being viewed by others

References

  1. Schubert, E. F. & Kim, J. K. Solid-state light sources getting smart. Science 308, 1274–1278 (2005)

    Article  ADS  CAS  Google Scholar 

  2. Koizumi, S., Watanabe, K., Hasegawa, M. & Kanda, H. Ultraviolet emission from a diamond p-n junction. Science 292, 1899–1901 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Akasaki, I. & Amano, H. Crystal growth and conductivity control of group III nitride semiconductors and their application to short wavelength light emitters. Jpn. J. Appl. Phys. 36, 5393–5408 (1997)

    Article  ADS  CAS  Google Scholar 

  4. Pankove, J. I., Miller, E. A., Richman, D. & Berkeyheiser, J. E. Electroluminescence in GaN. J. Lumin. 4, 63–66 (1971)

    Article  CAS  Google Scholar 

  5. Nakamura, S. et al. Superbright green InGaN SQW structure LEDs. Jpn. J. Appl. Phys. 34, L1332–L1335 (1995)

    Article  CAS  Google Scholar 

  6. Ponce, F. A. & Bour, D. P. Nitride-based semiconductors for blue and green light-emitting devices. Nature 386, 351–359 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Han, J. et al. AlGaN/GaN quantum well ultraviolet light emitting diodes. Appl. Phys. Lett. 73, 1688–1690 (1998)

    Article  ADS  CAS  Google Scholar 

  8. Nishida, T. & Kobayashi, N. 346 nm emission from AlGaN multi-quantum-well light emitting diode. Phys. Status Solidi A 176, 45–48 (1999)

    Article  ADS  CAS  Google Scholar 

  9. Adivarahan, V. et al. 250 nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85, 2175–2177 (2004)

    Article  ADS  CAS  Google Scholar 

  10. Hirayama, H. Quaternary InAlGaN-based high efficiency ultraviolet light-emitting diodes. J. Appl. Phys. 97, 091101 (2005)

    Article  ADS  Google Scholar 

  11. Li, J. et al. Band structure and fundamental optical transitions in wurtzite AlN. Appl. Phys. Lett. 83, 5163–5165 (2003)

    Article  ADS  CAS  Google Scholar 

  12. Taniyasu, Y., Kasu, M. & Kobayashi, N. Intentional control of n-type conduction for Si-doped AlN and AlxGa1-xN (0.42 ≤ x < 1). Appl. Phys. Lett. 81, 1255–1257 (2002)

    Article  ADS  CAS  Google Scholar 

  13. Taniyasu, Y., Kasu, M. & Makimoto, T. Electrical conduction properties of n-type Si-doped AlN with high electron mobility (> 100 cm2 V-1 s-1). Appl. Phys. Lett. 85, 4672–4674 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Ng, H. M. et al. The role of dislocation scattering in n-type GaN films. Appl. Phys. Lett. 73, 821–823 (1998)

    Article  ADS  CAS  Google Scholar 

  15. Nakamura, S., Mukai, T., Senoh, M. & Iwasa, N. Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys. 31, L139–L142 (1992)

    Article  ADS  CAS  Google Scholar 

  16. Nam, K. B. et al. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 83, 878–880 (2003)

    Article  ADS  CAS  Google Scholar 

  17. Mireles, F. & Ulloa, S. E. Acceptor binding energies in GaN and AlN. Phys. Rev. B 58, 3879–3887 (1998)

    Article  ADS  CAS  Google Scholar 

  18. Taniyasu, Y., Kasu, M., Kumakura, K., Makimoto, T. & Kobayashi, N. High electron concentrations in Si-doped AlN/AlGaN superlattices with high average Al content of 80%. Phys. Status Solidi A 200, 40–43 (2003)

    Article  ADS  CAS  Google Scholar 

  19. Kuokstis, E. et al. Near-band-edge photoluminescence of wurtzite-type AlN. Appl. Phys. Lett. 81, 2755–2757 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Sze, S. M. Physics of Semiconductor Devices 2nd edn 63–132 (Wiley, New York, 1981)

    Google Scholar 

  21. Amano, H. et al. Defect and stress control of AlGaN for fabrication of high performance UV light emitters. Phys. Status Solidi A 201, 2679–2685 (2001)

    ADS  Google Scholar 

  22. Rojo, J. C. et al. Report on the growth of bulk aluminium nitride and subsequent substrate preparation. J. Cryst. Growth 231, 317–321 (2001)

    Article  ADS  Google Scholar 

  23. Edgar, J. H. Properties of Group III Nitrides 129–134 (INSPEC, London, 1994)

    Google Scholar 

Download references

Acknowledgements

We thank M. Prinz, K. Thonke and R. Sauer at the University of Ulm in Germany for measurement of free-exciton energy in our AlN by cathodoluminescence and photoreflectance. We are also grateful to K. Kumakura for discussions, and K. Torimitsu and H. Takayanagi for their encouragement. Author Contributions Y.T. performed experimental work and data analysis. All authors discussed results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitaka Taniyasu.

Ethics declarations

Competing interests

Reprints and permissions information is available at npg.nature.com/reprintsandpermissions. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006). https://doi.org/10.1038/nature04760

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature04760

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing