Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping

Abstract

Bose–Einstein condensation1,2 is one of the most fascinating phenomena predicted by quantum mechanics. It involves the formation of a collective quantum state composed of identical particles with integer angular momentum (bosons), if the particle density exceeds a critical value. To achieve Bose–Einstein condensation, one can either decrease the temperature or increase the density of bosons. It has been predicted3,4 that a quasi-equilibrium system of bosons could undergo Bose–Einstein condensation even at relatively high temperatures, if the flow rate of energy pumped into the system exceeds a critical value. Here we report the observation of Bose–Einstein condensation in a gas of magnons at room temperature. Magnons are the quanta of magnetic excitations in a magnetically ordered ensemble of magnetic moments. In thermal equilibrium, they can be described by Bose–Einstein statistics with zero chemical potential and a temperature-dependent density. In the experiments presented here, we show that by using a technique of microwave pumping it is possible to excite additional magnons and to create a gas of quasi-equilibrium magnons with a non-zero chemical potential. With increasing pumping intensity, the chemical potential reaches the energy of the lowest magnon state, and a Bose condensate of magnons is formed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The set-up for magnon excitation and detection.
Figure 2: BLS spectrum of thermal magnons recorded without pumping.
Figure 3: BLS spectra from pumped magnons at different delay times, τ.
Figure 4: Evolution of the magnon population after the pumping is switched off at τ = 1,000 ns.

Similar content being viewed by others

References

  1. Bose, S. N. Plancks Gesetz und Lichtquantenhypothese. Z. Phys. 26, 178–181 (1924)

    Article  ADS  CAS  Google Scholar 

  2. Einstein, A. Quantentheorie des einatomigen idealen Gases. Part I. Sber. Preuss. Akad. Wiss. 22, 261–267 (1924); Quantentheorie des einatomigen idealen Gases. Part II. Sber. Preuss. Akad. Wiss. 1, 3–14 (1925)

    Google Scholar 

  3. Fröhlich, H. Bose condensation of strongly excited longitudinal electric modes. Phys. Lett. A 26, 402–403 (1968)

    Article  ADS  Google Scholar 

  4. Mesquita, M. V., Vasconcellos, A. R. & Luzzi, R. Positive-feedback-enhanced Fröhlich's Bose–Einstein-like condensation in biosystems. Int. J. Quant. Chem. 66, 177–187 (1998)

    Article  CAS  Google Scholar 

  5. Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E. & Cornell, E. A. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995)

    Article  ADS  CAS  Google Scholar 

  6. Davis, K. B. et al. Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969–3973 (1995)

    Article  ADS  CAS  Google Scholar 

  7. Bloch, I., Hänsch, T. W. & Esslinger, T. Measurement of the spatial coherence of a trapped Bose gas at the phase transition. Nature 403, 166–170 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Hancox, C. I., Doret, S. C., Hummon, M. T., Luo, L. J. & Doyle, J. M. Magnetic trapping of rare-earth atoms at millikelvin temperatures. Nature 431, 281–284 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Keldysh, L. V. The electron-hole liquid in semiconductors. Contemp. Phys. 27, 395–428 (1986)

    Article  ADS  CAS  Google Scholar 

  10. Butov, L. V. Condensation and pattern formation in cold exciton gases in coupled quantum wells. J. Phys. Condens. Matter 16, R1577–R1613 (2004)

    Article  ADS  CAS  Google Scholar 

  11. Fukuzawa, T., Mendez, E. E. & Hong, J. M. Phase transition of an exciton system in GaAs coupled quantum wells. Phys. Rev. Lett. 64, 3066–3069 (1990)

    Article  ADS  CAS  Google Scholar 

  12. Eisenstein, J. P. & MacDonald, A. M. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 432, 691–694 (2004)

    Article  ADS  CAS  Google Scholar 

  13. Yamamoto, Y. Half-matter, half-light amplifier. Nature 405, 629–630 (2000)

    Article  CAS  Google Scholar 

  14. Misochko, O. V., Hase, M., Ishioka, K. & Kitajima, M. Transient Bose–Einstein condensation of phonons. Phys. Lett. A 321, 381–387 (2004)

    Article  ADS  CAS  Google Scholar 

  15. Kalafati, Y. D. & Safonov, V. L. Thermodynamic approach to the theory of paramagnetic resonance of magnons. Zh. Eksp. Teor. Phys. 95, 2009–2020 (1989); [in English] Sov. Phys. JETP 68, 1162 (1989)

    Google Scholar 

  16. Kaganov, M. I., Pustylnik, N. B. & Shalaeva, T. I. Magnons, magnetic polaritons, magnetostatic waves. Phys. Usp. 40, 181–224 (1997)

    Article  ADS  Google Scholar 

  17. Nikuni, T., Oshikawa, M., Oosawa, A. & Tanaka, H. Bose–Einstein condensation of dilute magnons in TlCuCl3 . Phys. Rev. Lett. 84, 5868–5871 (2000)

    Article  ADS  CAS  Google Scholar 

  18. Rüegg, C. et al. Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 . Nature 423, 62–65 (2003)

    Article  ADS  Google Scholar 

  19. Della Torre, E., Bennett, L. H. & Watson, R. E. Extension of the Bloch T3/2 law to magnetic nanostructures: Bose–Einstein condensation. Phys. Rev. Lett. 94, 147210 (2005)

    Article  ADS  CAS  Google Scholar 

  20. L'vov, V. S. Wave Turbulence Under Parametric Excitation (Springer, Berlin, 1994)

    Book  Google Scholar 

  21. Gurevich, A. G. & Melkov, G. A. Magnetization Oscillations and Waves (CRC, New York, 1996)

    Google Scholar 

  22. Demokritov, S. O., Hillebrands, B. & Slavin, A. N. Brillouin light scattering studies of confined spin waves: linear and nonlinear confinement. Phys. Rep. 348, 441–489 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Damon, R. W. & Eshbach, J. R. Magnetostatic modes of a ferromagnet slab. J. Phys. Chem. Solids 19, 308–320 (1961)

    Article  ADS  Google Scholar 

  24. Sparks, M. Ferromagnetic resonance in thin films. I. Theory of normal-mode frequencies. Phys. Rev. B 1, 3831–3856 (1970)

    Article  ADS  Google Scholar 

  25. Wolfram, T. & De Wames, R. E. Magnetoexchange branches and spin-wave resonance in conducting and insulating films: perpendicular resonance. Phys. Rev. B 4, 3125–3141 (1971)

    Article  ADS  Google Scholar 

  26. Cottam, M. & Lockwood, D. Light Scattering in Magnetic Solids (Wiley, New York, 1986)

    Google Scholar 

Download references

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft, the US Army Research Office, and the Science & Technology Center of Ukraine is acknowledged. We are also indebted to D. Mills, V. Safonov and M. Katsnelson for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Demokritov.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demokritov, S., Demidov, V., Dzyapko, O. et al. Bose–Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006). https://doi.org/10.1038/nature05117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05117

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing