Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The order of the quantum chromodynamics transition predicted by the standard model of particle physics

Abstract

Quantum chromodynamics (QCD) is the theory of the strong interaction, explaining (for example) the binding of three almost massless quarks into a much heavier proton or neutron—and thus most of the mass of the visible Universe. The standard model of particle physics predicts a QCD-related transition that is relevant for the evolution of the early Universe. At low temperatures, the dominant degrees of freedom are colourless bound states of hadrons (such as protons and pions). However, QCD is asymptotically free, meaning that at high energies or temperatures the interaction gets weaker and weaker1,2, causing hadrons to break up. This behaviour underlies the predicted cosmological transition between the low-temperature hadronic phase and a high-temperature quark–gluon plasma phase (for simplicity, we use the word ‘phase’ to characterize regions with different dominant degrees of freedom). Despite enormous theoretical effort, the nature of this finite-temperature QCD transition (that is, first-order, second-order or analytic crossover) remains ambiguous. Here we determine the nature of the QCD transition using computationally demanding lattice calculations for physical quark masses. Susceptibilities are extrapolated to vanishing lattice spacing for three physical volumes, the smallest and largest of which differ by a factor of five. This ensures that a true transition should result in a dramatic increase of the susceptibilities. No such behaviour is observed: our finite-size scaling analysis shows that the finite-temperature QCD transition in the hot early Universe was not a real phase transition, but an analytic crossover (involving a rapid change, as opposed to a jump, as the temperature varied). As such, it will be difficult to find experimental evidence of this transition from astronomical observations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Susceptibilities for the light quarks for N t = 4 and for N t = 6 as a function of 6/ g 2 , where g is the gauge coupling.
Figure 2: Normalized susceptibilities T4/(m2Δ χ ) for the light quarks for given aspect ratios ( r ) as functions of the lattice spacing.
Figure 3: Continuum extrapolated susceptibilities T4/(m2Δ χ ) as a function of 1/( Tc3V).
Figure 4: The line of constant physics.

Similar content being viewed by others

References

  1. Gross, D. J. & Wilczek, F. Ultraviolet behavior of non-abelian gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973)

    Article  CAS  ADS  Google Scholar 

  2. Politzer, H. D. Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973)

    Article  CAS  ADS  Google Scholar 

  3. Karsch, F., Neuhaus, T., Patkos, A. & Rank, J. Critical Higgs mass and temperature dependence of gauge boson masses in the SU(2) gauge-Higgs model. Nucl. Phys. Proc. (Suppl.) 53, 623–625 (1997)

    Article  CAS  ADS  Google Scholar 

  4. Kajantie, K., Laine, M., Rummukainen, K. & Shaposhnikov, M. E. Is there a hot electroweak phase transition at m h > m w? Phys. Rev. Lett. 77, 2887–2890 (1996)

    Article  CAS  ADS  Google Scholar 

  5. Csikor, F., Fodor, Z. & Heitger, J. Endpoint of the hot electroweak phase transition. Phys. Rev. Lett. 82, 21–24 (1999)

    Article  CAS  ADS  Google Scholar 

  6. Gurtler, M., Ilgenfritz, E.-M. & Schiller, A. Where the electroweak phase transition ends. Phys. Rev. D 56, 3888–3895 (1997)

    Article  CAS  ADS  Google Scholar 

  7. Schwarz, D. J. The first second of the universe. Ann. Phys. 12, 220–270 (2003)

    Article  MathSciNet  CAS  Google Scholar 

  8. Witten, E. Cosmic separation of phases. Phys. Rev. D 30, 272–285 (1984)

    Article  CAS  ADS  Google Scholar 

  9. Applegate, J. H. & Hogan, C. J. Relics of cosmic quark condensation. Phys. Rev. D 31, 3037–3045 (1985)

    Article  CAS  ADS  Google Scholar 

  10. Pisarski, R. D. & Wilczek, F. Remarks on the chiral phase transition in chromodynamics. Phys. Rev. D 29, 338–341 (1984)

    Article  CAS  ADS  Google Scholar 

  11. Celik, T., Engels, J. & Satz, H. The order of the deconfinement transition in SU(3) Yang–Mills theory. Phys. Lett. B 125, 411–414 (1983)

    Article  ADS  Google Scholar 

  12. Kogut, J. B. et al. Deconfinement and chiral symmetry restoration at finite temperatures in SU(2) and SU(3) gauge theories. Phys. Rev. Lett. 50, 393–396 (1983)

    Article  CAS  ADS  Google Scholar 

  13. Gottlieb, S. A. et al. The deconfining phase transition and the continuum limit of lattice quantum chromodynamics. Phys. Rev. Lett. 55, 1958–1961 (1985)

    Article  CAS  ADS  Google Scholar 

  14. Brown, F. R., Christ, N. H., Deng, Y. F., Gao, M. S. & Woch, T. J. Nature of the deconfining phase transition in SU(3) lattice gauge theory. Phys. Rev. Lett. 61, 2058–2061 (1988)

    Article  CAS  ADS  Google Scholar 

  15. Fukugita, M., Okawa, M. & Ukawa, A. Order of the deconfining phase transition in SU(3) lattice gauge theory. Phys. Rev. Lett. 63, 1768–1771 (1989)

    Article  CAS  ADS  Google Scholar 

  16. Halasz, M. A., Jackson, A. D., Shrock, R. E., Stephanov, M. A. & Verbaarschot, J. J. M. On the phase diagram of QCD. Phys. Rev. D 58, 096007 (1998)

    Article  ADS  Google Scholar 

  17. Berges, J. & Rajagopal, K. Color superconductivity and chiral symmetry restoration at nonzero baryon density and temperature. Nucl. Phys. B 538, 215–232 (1999)

    Article  ADS  Google Scholar 

  18. Schaefer, B.-J. & Wambach, J. The phase diagram of the quark meson model. Nucl. Phys. A 757, 479–492 (2005)

    Article  ADS  Google Scholar 

  19. Herpay, T., Patkos, A., Szep, Zs. & Szepfalusy, P. Mapping the boundary of the first order finite temperature restoration of chiral symmetry in the mπ–mK plane with a linear σ model. Phys. Rev. D 71, 125017 (2005)

    Article  ADS  Google Scholar 

  20. Brown, F. R. et al. On the existence of a phase transition for QCD with three light quarks. Phys. Rev. Lett. 65, 2491–2494 (1990)

    Article  CAS  ADS  Google Scholar 

  21. Khan, A. A. et al. Phase structure and critical temperature of two flavor QCD with renormalization group improved gauge action and clover improved Wilson quark action. Phys. Rev. D 63, 034502 (2001)

    Article  ADS  Google Scholar 

  22. Karsch, F. et al. Where is the chiral critical point in three-flavor QCD? Nucl. Phys. Proc. Suppl. 129, 614–616 (2004)

    Article  ADS  Google Scholar 

  23. Davies, C. T. H. Lattice QCD. In Heavy Flavor Physics, Scottish Graduate Textbook Series (eds Davies, C. T. H. & Playfer, S. M.) 7–23 (Institute of Physics, 2002)

    Google Scholar 

  24. Ukawa, A. Lectures on lattice qcd at finite temperature. In Proceedings of the 1993 Uehling Summer School ‘Phenomenology and Lattice QCD (Seattle, July 1993)’ (eds Kilcup, G. & Sharp, S.) (World Scientific, Singapore, 1995)

    Google Scholar 

  25. Aoki, Y., Fodor, Z., Katz, S. D. & Szabo, K. K. The equation of state in lattice QCD: with physical quark masses towards the continuum limit. J. High-Energy Phys. 01:089 (2006)

  26. Bernard, C., Golterman, M. & Shamir, Y. Observations on staggered fermions at non-zero lattice spacing. Phys. Rev. D 73, 114511 (2006)

    Article  ADS  Google Scholar 

  27. Gottlieb, S. A. et al. Hybrid molecular dynamics algorithms for the numerical simulation of quantum chromodynamics. Phys. Rev. D 35, 2531–2542 (1987)

    Article  CAS  ADS  Google Scholar 

  28. Clark, M. A. & Kennedy, A. D. The rhmc algorithm for two flavors of dynamical staggered fermions. Nucl. Phys. Proc. Suppl. 129, 850–852 (2004)

    Article  ADS  Google Scholar 

  29. Fodor, Z., Katz, S. D. & Papp, G. Better than $1/mflops sustained: A scalable PC-based parallel computer for lattice qcd. Comput. Phys. Commun. 152, 121–134 (2003)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Csikor, A. Dougall, K.-H. Kampert, M. Nagy, Z. Rácz and D. J. Schwarz for discussions. This research was partially supported by a DFG German Science grant, OTKA Hungarian Science grants and an EU research grant. The computations were carried out on PC clusters at the University of Budapest and Wuppertal with next-neighbour communication architecture29 and on the BlueGene/L machine in Jülich. A modified version of the publicly available MILC code (http://physics.indiana.edu/~sg/milc.html) was used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. D. Katz.

Ethics declarations

Competing interests

Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aoki, Y., Endrődi, G., Fodor, Z. et al. The order of the quantum chromodynamics transition predicted by the standard model of particle physics. Nature 443, 675–678 (2006). https://doi.org/10.1038/nature05120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature05120

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing