Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels

Abstract

Global energy and environmental problems have stimulated increased efforts towards synthesizing biofuels from renewable resources1,2,3. Compared to the traditional biofuel, ethanol, higher alcohols offer advantages as gasoline substitutes because of their higher energy density and lower hygroscopicity. In addition, branched-chain alcohols have higher octane numbers compared with their straight-chain counterparts. However, these alcohols cannot be synthesized economically using native organisms. Here we present a metabolic engineering approach using Escherichia coli to produce higher alcohols including isobutanol, 1-butanol, 2-methyl-1-butanol, 3-methyl-1-butanol and 2-phenylethanol from glucose, a renewable carbon source. This strategy uses the host’s highly active amino acid biosynthetic pathway and diverts its 2-keto acid intermediates for alcohol synthesis. In particular, we have achieved high-yield, high-specificity production of isobutanol from glucose. The strategy enables the exploration of biofuels beyond those naturally accumulated to high quantities in microbial fermentation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Production of higher alcohols through the synthetic non-fermentative pathways.
Figure 2: Summary of results for isobutanol and 1-butanol production in E. coli.

Similar content being viewed by others

References

  1. Lin, Y. L. & Blaschek, H. P. Butanol production by a butanol-tolerant strain of Clostridium acetobutylicum in extruded corn broth. Appl. Environ. Microbiol. 45, 966–973 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Nair, R. V., Bennett, G. N. & Papoutsakis, E. T. Molecular characterization of an aldehyde/alcohol dehydrogenase gene from Clostridium acetobutylicum ATCC 824. J Bacteriol. 176, 871–885 (1994)

    Article  CAS  Google Scholar 

  3. Ingram, L. O. et al. Enteric bacterial catalysts for fuel ethanol production. Biotechnol. Prog. 15, 855–866 (1999)

    Article  CAS  Google Scholar 

  4. Sentheshanuganathan, S. The mechanism of the formation of higher alcohols from amino acids by Saccharomyces cerevisiae . Biochem. J. 74, 568–576 (1960)

    Article  CAS  Google Scholar 

  5. Dickinson, J. R. et al. A 13C nuclear magnetic resonance investigation of the metabolism of leucine to isoamyl alcohol in Saccharomyces cerevisiae . J. Biol. Chem. 272, 26871–26878 (1997)

    Article  CAS  Google Scholar 

  6. Dickinson, J. R., Harrison, S. J. & Hewlins, M. J. An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae . J. Biol. Chem. 273, 25751–25756 (1998)

    Article  CAS  Google Scholar 

  7. Dickinson, J. R., Harrison, S. J., Dickinson, J. A. & Hewlins, M. J. An investigation of the metabolism of isoleucine to active Amyl alcohol in Saccharomyces cerevisiae . J. Biol. Chem. 275, 10937–10942 (2000)

    Article  CAS  Google Scholar 

  8. Dickinson, J. R. et al. The catabolism of amino acids to long chain and complex alcohols in Saccharomyces cerevisiae . J. Biol. Chem. 278, 8028–8034 (2003)

    Article  CAS  Google Scholar 

  9. Farmer, W. R. & Liao, J. C. Improving lycopene production in Escherichia coli by engineering metabolic control. Nature Biotechnol. 18, 533–537 (2000)

    Article  CAS  Google Scholar 

  10. Khosla, C. & Keasling, J. D. Metabolic engineering for drug discovery and development. Nature Rev. Drug Discov. 2, 1019–1025 (2003)

    Article  CAS  Google Scholar 

  11. Barbirato, F., Grivet, J. P., Soucaille, P. & Bories, A. 3-Hydroxypropionaldehyde, an inhibitory metabolite of glycerol fermentation to 1,3-propanediol by enterobacterial species. Appl. Environ. Microbiol. 62, 1448–1451 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, M. M., Lawman, P. D. & Cameron, D. C. Improving 1,3-propanediol production from glycerol in a metabolically engineered Escherichia coli by reducing accumulation of sn-glycerol-3-phosphate. Biotechnol. Prog. 18, 694–699 (2002)

    Article  CAS  Google Scholar 

  13. Pitera, D. J., Paddon, C. J., Newman, J. D. & Keasling, J. D. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli . Metab. Eng. 9, 193–207 (2007)

    Article  CAS  Google Scholar 

  14. Sentheshanmuganathan, S. & Elsden, S. R. The mechanism of the formation of tyrosol by Saccharomyces cerevisiae . Biochem. J. 69, 210–218 (1958)

    Article  CAS  Google Scholar 

  15. Konig, S. Subunit structure, function and organisation of pyruvate decarboxylases from various organisms. Biochim. Biophys. Acta 1385, 271–286 (1998)

    Article  CAS  Google Scholar 

  16. Hohmann, S. Characterization of PDC6, a third structural gene for pyruvate decarboxylase in Saccharomyces cerevisiae . J. Bacteriol. 173, 7963–7969 (1991)

    Article  CAS  Google Scholar 

  17. Vuralhan, Z., Morais, M. A., Tai, S. L., Piper, M. D. & Pronk, J. T. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae . Appl. Environ. Microbiol. 69, 4534–4541 (2003)

    Article  CAS  Google Scholar 

  18. de la Plaza, M., Fernandez de Palencia, P., Pelaez, C. & Requena, T. Biochemical and molecular characterization of α-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis . FEMS Microbiol. Lett. 238, 367–374 (2004)

    CAS  PubMed  Google Scholar 

  19. Russell, D. W., Smith, M., Williamson, V. M. & Young, E. T. Nucleotide sequence of the yeast alcohol dehydrogenase II gene. J. Biol. Chem. 258, 2674–2682 (1983)

    CAS  PubMed  Google Scholar 

  20. Lutz, R. & Bujard, H. Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1–I2 regulatory elements. Nucleic Acids Res. 25, 1203–1210 (1997)

    Article  CAS  Google Scholar 

  21. Gollop, N., Damri, B., Chipman, D. M. & Barak, Z. Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms. J. Bacteriol. 172, 3444–3449 (1990)

    Article  CAS  Google Scholar 

  22. Woods, D. R. The genetic engineering of microbial solvent production. Trends Biotechnol. 13, 259–264 (1995)

    Article  CAS  Google Scholar 

  23. Bogosian, G. et al. Biosynthesis and incorporation into protein of norleucine by Escherichia coli . J. Biol. Chem. 264, 531–539 (1989)

    CAS  PubMed  Google Scholar 

  24. Calhoun, D. H., Rimerman, R. A. & Hatfield, G. W. Threonine deaminase from Escherichia coli. I. Purification and properties. J. Biol. Chem. 248, 3511–3516 (1973)

    CAS  PubMed  Google Scholar 

  25. Charon, N. W., Johnson, R. C. & Peterson, D. Amino acid biosynthesis in the spirochete Leptospira: evidence for a novel pathway of isoleucine biosynthesis. J. Bacteriol. 117, 203–211 (1974)

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Howell, D. M., Xu, H. & White, R. H. (R)-citramalate synthase in methanogenic archaea. . J. Bacteriol. 181, 331–333 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu, H. et al. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. J. Bacteriol. 186, 5400–5409 (2004)

    Article  CAS  Google Scholar 

  28. Flint, D. H., Emptage, M. H., Finnegan, M. G., Fu, W. & Johnson, M. K. The role and properties of the iron-sulfur cluster in Escherichia coli dihydroxy-acid dehydratase. J. Biol. Chem. 268, 14732–14742 (1993)

    CAS  PubMed  Google Scholar 

  29. Miwa, K. et al. Construction of L-threonine overproducing strains of Escherichia coli K-12 using recombinant DNA techniques. Agric. Biol. Chem. 47, 2329–2334 (1983)

    CAS  Google Scholar 

  30. Alper, H., Moxley, J., Nevoigt, E., Fink, G. R. & Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565–1568 (2006)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by UCLA-DOE Institute for Genomics and Proteomics. We are grateful to H. Bujard for plasmids, and members of the Liao laboratory for discussion and comments on the manuscript.

Author Contributions S.A. and J.C.L. designed experiments; S.A. and T.H. performed the experiments; S.A. and J.C.L. analysed the data; and S.A. and J.C.L. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Liao.

Ethics declarations

Competing interests

The University of California has filed a provisional patent application based on this work, and has licensed the technology to Gevo, a biofuel company. J.C.L. serves on the Scientific Advisory Board of Gevo. No financial support was received from Gevo to support this work.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-4 with Legends and Supplementary Tables 1-4. (PDF 361 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atsumi, S., Hanai, T. & Liao, J. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008). https://doi.org/10.1038/nature06450

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06450

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing