Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Self-healing and thermoreversible rubber from supramolecular assembly

Abstract

Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress1,2. Rubber elasticity is a property of macromolecules that are either covalently cross-linked1,2 or connected in a network by physical associations such as small glassy or crystalline domains3,4,5, ionic aggregates6 or multiple hydrogen bonds7,8,9,10,11,12,13,14,15,16. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Supramolecular network.
Figure 2: Synthesis pathway.
Figure 3: Rheological and mechanical properties.
Figure 4: Self-mending at room temperature.

Similar content being viewed by others

References

  1. Tabor, D. Gases, Liquids and Solids and Other States of Matter 3rd edn, Ch. 13 (Cambridge Univ. Press, Cambridge, UK, 1991)

    Book  Google Scholar 

  2. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, Oxford, UK, 2003)

    Google Scholar 

  3. Holden, G., Kricheldorf, H. R. & Quirk, R. P. Thermoplastic Elastomers 3rd edn (Hanser, Munich, 2004)

    Google Scholar 

  4. Fakirov, S. Handbook of Condensation Thermoplastic Elastomers (Wiley-VCH, Weinheim, 2005)

    Book  Google Scholar 

  5. Handlin, D. L., Trenor, S. & Wright, K. in Macromolecular Engineering (eds Matyjaszewski, K., Gnanou, Y. & Leibler, L.) Vol. 4 2001–2031 (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  6. Mac Knight, W. J. & Lundberg, R. D. in Thermoplastic Elastomers (eds Holden, G., Kricheldorf, H. R. & Quirk, R. P.) 3rd edn 261–283 (Hanser, Munich, 2004)

    Google Scholar 

  7. Stadler, R. & de Lucca Freitas, L. Thermoplastic elastomers by hydrogen bonding. 1. Rheological properties of modified polybutadiene. Colloid Polym. Sci. 264, 773–778 (1986)

    Article  CAS  Google Scholar 

  8. Stadler, R. Thermoplastic elastomers via supramolecular self-assembling in random copolymers. Kautschuk Gummi Kunststoffe 46, 619–628 (1993)

    CAS  Google Scholar 

  9. Sijbesma, R. P. et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science 278, 1601–1604 (1997)

    Article  ADS  CAS  Google Scholar 

  10. Lange, R. F. M., Van Gurp, M. & Meijer, E. W. Hydrogen-bonded supramolecular networks. J. Polym. Sci. A. 37, 3657–3670 (1999)

    Article  CAS  Google Scholar 

  11. Chino, K. & Ashiura, M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks. Macromolecules 34, 9201–9204 (2001)

    Article  ADS  CAS  Google Scholar 

  12. Bosman, A. W., Brunsveld, L., Folmer, B. J. B., Sijbesma, R. P. & Meijer, E. W. Supramolecular polymers: from scientific curiosity to technological reality. Macromol. Symp. 201, 143–145 (2003)

    Article  CAS  Google Scholar 

  13. Colombani, O. et al. Attempt toward 1D cross-linked thermoplastic elastomers: structure and mechanical properties of a new system. Macromolecules 38, 1752–1759 (2005)

    Article  ADS  CAS  Google Scholar 

  14. Peng, C. C. & Abetz, V. A simple pathway towards modification of polybutadiene: a new approach to thermoreversible cross-linking rubber comprising supramolecular hydrogen-bonding networks. Macromolecules 38, 5575–5580 (2005)

    Article  ADS  CAS  Google Scholar 

  15. Elkins, C. L., Park, T., McKee, M. G. & Long, T. E. Synthesis and characterization of poly(2-ethylhexyl methacrylate) copolymers containing pendant, self-complementary multiple-hydrogen-bonding sites. J. Polym. Sci. A 43, 4618–4631 (2005)

    Article  CAS  Google Scholar 

  16. Kautz, H., van Beek, D. J. M., Sijbesma, R. P. & Meijer, E. W. Cooperative end-to-end and lateral hydrogen-bonding motifs in supramolecular thermoplastic elastomers. Macromolecules 39, 4265–4267 (2006)

    Article  ADS  CAS  Google Scholar 

  17. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, 1995)

    Book  Google Scholar 

  18. Fouquey, C., Lehn, J.-M. & Levelut, A. M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990)

    Article  CAS  Google Scholar 

  19. Ligthart, G. B. W. L., Scherman, O. A., Sijbesma, R. P. & Meijer, E. W. in Macromolecular Engineering (eds Matyjaszewski, K., Gnanou, Y. & Leibler, L.) Vol. 1, Ch. 9 351–399 (Wiley-VCH, Weinheim, 2007)

    Google Scholar 

  20. Kolomiets, E., Buhler, E., Candau, S. J. & Lehn, J. M. Structure and properties of supramolecular polymers generated from heterocomplementary monomers linked through sextuple hydrogen-bonding arrays. Macromolecules 39, 1173–1181 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Bouteiller, L. Assembly via hydrogen bonds of low molar mass compounds into supramolecular polymers. Adv. Polym. Sci. 207, 79–112 (2007)

    Article  CAS  Google Scholar 

  22. St., Pourcain, C. B. & Griffin, A. C. Thermoreversible supramolecular networks with polymeric properties. Macromolecules 28, 4116–4121 (1995)

    Article  ADS  CAS  Google Scholar 

  23. Ault, W. C. in Kirk-Othmer Encyclopedia of Chemical Technology 2nd edn, Vol. 8 845–849 (Interscience, New York, 1964)

    Google Scholar 

  24. Muller, M. et al. Junctions dynamics in telechelic hydrogen bonded polyisobutelene networks. Macromolecules 29, 2577–2583 (1996)

    Article  ADS  Google Scholar 

  25. Cates, M. E. Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20, 2289–2296 (1987)

    Article  ADS  CAS  Google Scholar 

  26. Drye, T. J. & Cates, M. E. Living networks: the role of cross-links in entangled surfactant solutions. J. Chem. Phys. 96, 1367–1375 (1992)

    Article  ADS  CAS  Google Scholar 

  27. Rubinstein, M. & Semenov, A. N. Dynamics of entangled solutions of associating polymers. Macromolecules 34, 1058–1068 (2001)

    Article  ADS  CAS  Google Scholar 

  28. Warner, M. & Terentjev, E. M. Nematic elastomers—a new state of matter? Prog. Polym. Sci. 21, 853–891 (1996)

    Article  CAS  Google Scholar 

  29. Cloitre, M., Borrega, R. & Leibler, L. Rheological aging and rejuvenation in microgel pastes. Phys. Rev. Lett. 85, 4819–4822 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Cipelletti, L., Manley, S., Ball, R. C. & Weitz, D. A. Universal aging features in the restructuring of fractal colloidal gels. Phys. Rev. Lett. 84, 2275–2278 (2000)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P.-G. de Gennes for interest and support. We thank M. Cloître, J.-M. Lehn, K. Matyjaszewski and S. Stupp for discussions. We also thank M. Milléquant and S. Girault for their help with chromatography and X-ray scattering experiments, respectively. We are indebted to Arkema and in particular to M. Hidalgo for enlarging our views on some industrial aspects of this project. CNRS, ESPCI, Arkema and DGA are thanked for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludwik Leibler.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-6 with Legends. (PDF 230 kb)

Supplementary Movie 1

The file contains Supplementary Movie 1 demonstrating self healing of supramolecular rubber. Small movie showing the tensile test of a mended sample (compound B). Originally the sample was cut and the cut parts were brought together and healed at room temperature. At the beginning of the movie, the scar is not visible. It appears during the stretching and finally a fracture propagates and the sample breaks. We inked a rectangular area so that the deformation can be appreciated. Please note the elastic recovery after the sample is broken. (MP4 3780 kb)

Supplementary Movie 2

The file contains Supplementary Movie 2 demonstrating extensibility of supramolecular rubber. Small movie showing the extensibility of the supramolecular rubber plasticized by water. (MPG 335 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. et al. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008). https://doi.org/10.1038/nature06669

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06669

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing