Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Plasmon lasers at deep subwavelength scale

Abstract

Laser science has been successful in producing increasingly high-powered, faster and smaller coherent light sources1,2,3,4,5,6,7,8,9. Examples of recent advances are microscopic lasers that can reach the diffraction limit, based on photonic crystals3, metal-clad cavities4 and nanowires5,6,7. However, such lasers are restricted, both in optical mode size and physical device dimension, to being larger than half the wavelength of the optical field, and it remains a key fundamental challenge to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit10,11. A way of addressing this issue is to make use of surface plasmons12,13, which are capable of tightly localizing light, but so far ohmic losses at optical frequencies have inhibited the realization of truly nanometre-scale lasers based on such approaches14,15. A recent theoretical work predicted that such losses could be significantly reduced while maintaining ultrasmall modes in a hybrid plasmonic waveguide16. Here we report the experimental demonstration of nanometre-scale plasmonic lasers, generating optical modes a hundred times smaller than the diffraction limit. We realize such lasers using a hybrid plasmonic waveguide consisting of a high-gain cadmium sulphide semiconductor nanowire, separated from a silver surface by a 5-nm-thick insulating gap. Direct measurements of the emission lifetime reveal a broad-band enhancement of the nanowire’s exciton spontaneous emission rate by up to six times owing to the strong mode confinement17 and the signature of apparently threshold-less lasing. Because plasmonic modes have no cutoff, we are able to demonstrate downscaling of the lateral dimensions of both the device and the optical mode. Plasmonic lasers thus offer the possibility of exploring extreme interactions between light and matter, opening up new avenues in the fields of active photonic circuits18, bio-sensing19 and quantum information technology20.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The deep subwavelength plasmonic laser.
Figure 2: Laser oscillation and threshold characteristics of plasmonic and photonic lasers.
Figure 3: The Purcell effect in plasmonic and photonic lasers.
Figure 4: The signature of threshold-less lasing due to high β -factor.

Similar content being viewed by others

References

  1. Gordon, J. P., Zeiger, H. J. & Townes, C. H. The maser—new type of microwave amplifier, frequency standard and spectrometer. Phys. Rev. 99, 1264–1274 (1955)

    Article  ADS  CAS  Google Scholar 

  2. Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Altug, H., Englund, D. & Vučković, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006)

    Article  ADS  CAS  Google Scholar 

  4. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007)

    Article  ADS  CAS  Google Scholar 

  5. Johnson, J. C. et al. Single gallium nitride nanowire lasers. Nature Mater. 1, 106–110 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Duan, X., Huang, Y., Agarwal, R. & Lieber, C. M. Single-nanowire electrically driven lasers. Nature 421, 241–245 (2003)

    Article  ADS  CAS  Google Scholar 

  7. Zimmler, M. A., Bao, J., Capasso, F., Müller, S. & Ronning, C. Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93, 051101 (2008)

    Article  ADS  Google Scholar 

  8. Astafiev, O. et al. Single artificial atom lasing. Nature 449, 588–590 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Scalari, G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev. 3, 45–66 (2009)

    Article  ADS  CAS  Google Scholar 

  10. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003)

    Article  ADS  Google Scholar 

  11. Zheludev, N. I., Prosvirnin, S. L., Papasimakis, N. & Fedotov, V. A. Lasing spaser. Nature Photon. 2, 351–354 (2008)

    Article  ADS  CAS  Google Scholar 

  12. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003)

    Article  ADS  CAS  Google Scholar 

  13. Pile, D. F. P. et al. Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding. Appl. Phys. Lett. 87, 061106 (2005)

    Article  ADS  Google Scholar 

  14. Ambati, M. et al. Observation of stimulated emission of surface plasmon polaritons. Nano Lett. 8, 3998–4001 (2008)

    Article  ADS  CAS  Google Scholar 

  15. Noginov, M. A. et al. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008)

    Article  ADS  CAS  Google Scholar 

  16. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for sub-wavelength confinement and long-range propagation. Nature Photon. 2, 495–500 (2008)

    Article  Google Scholar 

  17. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  18. Volkov, V. S., Devaux, E., Laluet, J.-Y., Ebbesen, T. W. & Bozhevolnyi, S. I. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    Article  ADS  Google Scholar 

  19. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008)

    Article  ADS  CAS  Google Scholar 

  20. Akimov, V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007)

    Article  ADS  CAS  Google Scholar 

  21. Liu, Y., Bartal, G., Genov, D. A. & Zhang, X. Subwavelength discrete solitons in nonlinear metamaterials. Phys. Rev. Lett. 99, 153901 (2007)

    Article  ADS  Google Scholar 

  22. Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides. Phys. Rev. Lett. 93, 137404 (2004)

    Article  ADS  Google Scholar 

  23. Oulton, R. F., Bartal, G., Pile, D. F. P. & Zhang, X. Confinement and propagation characteristics of subwavelength plasmonic modes. N. J. Phys. 10, 105018 (2008)

    Article  Google Scholar 

  24. Ma, R. M., Dai, L. & Qin, G. G. Enhancement-mode metal-semiconductor field-effect transistors based on single n-CdS nanowires. Appl. Phys. Lett. 90, 093109 (2007)

    Article  ADS  Google Scholar 

  25. Thomas, G. D. & Hopfield, J. J. Optical properties of bound exciton complexes in cadmium sulfide. Phys. Rev. 128, 2135–2148 (1962)

    Article  ADS  CAS  Google Scholar 

  26. Siegman, A. E. Lasers 466–472 (University Science Book, 1986)

    Google Scholar 

  27. Weber, C., Becker, U., Renner, R. & Klingshirn, C. Measurement of the diffusion-length of carriers and excitons in CdS using laser-induced transient gratings. Z. Phys. B 72, 379–384 (1988)

    Article  ADS  CAS  Google Scholar 

  28. Björk, G. & Yamamoto, Y. Analysis of semiconductor microcavity lasers using rate equations. IEEE J. Quantum Electron. 27, 2386–2396 (1991)

    Article  ADS  Google Scholar 

  29. Ford, G. W. & Weber, W. H. Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113, 195–287 (1984)

    Article  ADS  CAS  Google Scholar 

  30. Casperson, L. W. Threshold characteristics of multimode laser oscillators. J. Appl. Phys. 12, 5194–5201 (1975)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank M. Ambati and D. Genov for discussions and the Lawrence Berkeley National Laboratory’s Molecular Foundry for technical support. We acknowledge financial support from the US Air Force Office of Scientific Research (AFOSR) MURI programme under grant number FA9550-04-1-0434 and from the National Science Foundation Nano-scale Science and Engineering Center (NSF-NSEC) under award number CMMI-0751621. T.Z. acknowledges a fellowship from the Alexander von Humboldt Foundation. V.J.S. acknowledges a fellowship from the Intel Corporation. L.D. and R.-M.M. acknowledge the National Natural Science Foundation of China (award numbers 60576037 and 10774007) and the National Basic Research Program of China (grant numbers 2006CB921607 and 2007CB613402).

Author Contributions R.F.O. developed the device design and conducted theoretical simulations. V.J.S., T.Z. and R.F.O. performed the optical measurements. R.-M.M. and L.D. synthesized the CdS nanowires. V.J.S. and C.G. fabricated the devices. X.Z., G.B. and R.F.O. guided the theoretical and experimental investigations. R.F.O., V.J.S., T.Z., G.B. and X.Z. analysed data and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Zhang.

Supplementary information

Supplementary Information

This file contains Supplementary Data, Supplementary Methods, Supplementary Figures S1-S16 with Legends, Supplementary Tables 1-2 and Supplementary References. (PDF 1172 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oulton, R., Sorger, V., Zentgraf, T. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009). https://doi.org/10.1038/nature08364

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08364

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing