Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomaterial systems for mechanosensing and actuation

Abstract

Living organisms use composite materials for various functions, such as mechanical support, protection, motility and the sensing of signals. Although the individual components of these materials may have poor mechanical qualities, they form composites of polymers and minerals with a remarkable variety of functional properties. Researchers are now using these natural systems as models for artificial mechanosensors and actuators, through studying both natural structures and their interactions with the environment. In addition to inspiring the design of new materials, analysis of natural structures on this basis can provide insight into evolutionary constraints on structure–function relationships in living organisms and the variety of structural solutions that emerged from these constraints.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vibration-sensitive slit organ.
Figure 2: Sensory hairs: tactile and airflow sensors.
Figure 3: Common actuators in spruce trees based on cell-wall swelling.
Figure 4: Closure mechanism of the Venus flytrap.

Similar content being viewed by others

References

  1. Ortiz, C. & Boyce, M. C. Bioinspired structural materials. Science 319, 1053–1054 (2008).

    Article  CAS  Google Scholar 

  2. Aizenberg, J. & Fratzl, P. (eds) Adv. Mater. 21 (Biological and Biomimetic Materials special issue) (2009).

  3. Fratzl, P. Biomimetic materials research: what can we really learn from nature's structural materials? J. R. Soc. Interface 4, 637–642 (2007).

    Article  CAS  Google Scholar 

  4. Fratzl, P. & Weinkamer, R. Nature's hierarchical materials. Prog. Mater. Sci. 52, 1263–1334 (2007).

    Article  CAS  Google Scholar 

  5. Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  ADS  CAS  Google Scholar 

  6. Bonderer, L. J., Studart, A. R. & Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069–1073 (2008).

    Article  ADS  CAS  Google Scholar 

  7. Messersmith, P. B. Multitasking in tissues and materials. Science 319, 1767–1768 (2008).

    Article  CAS  Google Scholar 

  8. Vaia, R. & Baur, J. Adaptive composites. Science 319, 420–421 (2008).

    Article  CAS  Google Scholar 

  9. Capadona, J. R., Shanmuganathan, K., Tyler, D. J., Rowan, S. J. & Weder, C. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319, 1370–1374 (2008).

    Article  ADS  CAS  Google Scholar 

  10. Sidorenko, A., Krupenkin, T., Taylor, A., Fratzl, P. & Aizenberg, J. Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Science 315, 487–490 (2007). This paper describes an artificial system with actuation by a hydrogel reinforced with stiff elements.

    Article  ADS  CAS  Google Scholar 

  11. van der Zwaag, S. (ed.) Self Healing Materials. An Alternative Approach to 20 Centuries of Materials Science (Springer, 2007).

    Google Scholar 

  12. Humphrey, J. A. C. & Barth, F. G. in Advances in Insect Physiology Vol. 34 (eds Casas, J. & Simpson, S. J.) 1–80 (Elsevier, 2008). This is an in-depth treatment of the biomechanics and physical–mathematical modelling of the sensing of medium motion by arthropod filiform hairs.

    Google Scholar 

  13. Barth, F. G. in Springer Handbook of Auditory Research Vol. 10 (eds Hoy, R. R., Popper, A. N. & Fay, R. R.) 228–278 (Springer, 1998).

    Google Scholar 

  14. Barth, F. G. A Spider's World: Senses and Behavior (Springer, 2002).

    Book  Google Scholar 

  15. Hößl, B., Böhm, H. J., Rammerstorfer, F. G. & Barth, F. G. Finite element modeling of arachnid slit sensilla — I. The mechanical significance of different slit arrays. J. Comp. Physiol. A 193, 445–459 (2007). This paper demonstrates the value of computational mechanics in an effort to understand the strange arrangements of strain-sensitive slits and their mechanical interaction in the spider exoskeleton.

    Article  Google Scholar 

  16. Hößl, B., Böhm, H. J., Rammerstorfer, F. G., Mullan, R. & Barth, F. G. Studying the deformation of arachnid slit sensilla by a fracture mechanical approach. J. Biomech. 39, 1761–1768 (2006).

    Article  Google Scholar 

  17. Barth, F. G. in Orientation and Communication in Arthropods (ed. Lehrer, M. ) 247–272 (Birkhäuser, 1997).

    Book  Google Scholar 

  18. Barth, F. G., Bleckmann, H., Bohnenberger, J. & Seyfarth, E.-A. Spiders of the genus Cupiennius Simon 1891 (Araneae, Ctenidae). Oecologia 77, 194–201 (1988).

    Article  ADS  Google Scholar 

  19. McConney, M. E., Schaber, C. F., Julian, M. D., Barth, F. G. & Tsukruk, V. V. Viscoelastic nanoscale properties of cuticle contribute to the high-pass properties of spider vibration receptor (Cupiennius salei Keys). J. R. Soc. Interface 4, 1135–1143 (2007). This paper describes a striking example of the role of non-nervous stimulus-conducting structures as mechanical filters and their match with biological needs.

    Article  Google Scholar 

  20. Sperling, L. H. Polymeric Multicomponent Materials: An Introduction (Wiley, 1997).

    Google Scholar 

  21. Vogel, E. & Barth, F. G. Vibrationsempfindlichkeit bei Cupiennius salei: Zum Einfluss efferenter nervöser Kontrolle und der Temperatur. Master's thesis, Univ. Vienna (2009).

    Google Scholar 

  22. Neville, A. C. Biology of the Arthropod Cuticle (Springer, 1975).

    Book  Google Scholar 

  23. Barth, F. G. Laminated composite material in biology. Microfiber reinforcement of an arthropod cuticle. Z. Zellforsch. Mikrosk. Anat. 144, 409–433 (1973).

    Article  CAS  Google Scholar 

  24. Albert, J. T., Friedrich, O. C., Dechant, H.-E. & Barth, F. G. Arthropod touch reception: spider hair sensilla as rapid touch detectors. J. Comp. Physiol. A 187, 303–312 (2001).

    Article  CAS  Google Scholar 

  25. Friedrich, O. C. Zum Berührungssinn von Spinnen. PhD thesis, Univ. Vienna (2001).

    Google Scholar 

  26. Dechant, H.-E., Rammerstorfer, F. G. & Barth, F. G. Arthropod touch reception: stimulus transformation and finite element model of spider tactile hairs. J. Comp. Physiol. A 187, 313–322 (2001).

    Article  CAS  Google Scholar 

  27. Dechant, H. E. Mechanical Properties and Finite Element Simulation of Spider Tactile Hairs. PhD thesis, Vienna Technical Univ. (2001).

    Google Scholar 

  28. Humphrey, J. A. C., Barth, F. G., Reed, M. & Spak, A. in Sensors & Sensing in Biology & Engineering (eds Barth, F. G., Humphrey, J. A. C. & Secomb, T. W.) 129–144 (Springer, 2003).

    Book  Google Scholar 

  29. Shimozawa, T., Murakami, J. & Kumagai T. in Sensors & Sensing in Biology & Engineering (eds Barth, F. G., Humphrey, J. A. C. & Secomb, T. W.) 145–158 (Springer, 2003).

    Book  Google Scholar 

  30. Thurm, U. in Biophysik (eds Hoppe, W., Lohmann, W., Markl, H. & Ziegler, H.) 691–696 (Springer, 1982).

  31. Barth, F. G., Wastl, U., Humphrey, J. A. C. & Devarakonda, R. Dynamics of arthropod filiform hairs. II. Mechanical properties of spider trichobothria (Cupiennius salei Keys). Phil. Trans. R. Soc. Lond. B 340, 445–461 (1993).

    Article  Google Scholar 

  32. Barth, F. G. & Höller, A. Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Phil. Trans. R. Soc. Lond. B 354, 183–192 (1999).

    Article  Google Scholar 

  33. Barth, F. G., Humphrey, J. A. C., Wastl, U., Halbritter, J. & Brittinger, W. Dynamics of arthropod filiform hairs. III. Flow patterns related to air movement detection in a spider (Cupiennius salei Keys). Phil. Trans. R. Soc. Lond. B 347, 397–412 (1995).

    Article  ADS  Google Scholar 

  34. Klopsch, C., Barth, F. G. & Humphrey, J. A. C. in Proc. 5th Int. Symp. Turbulence and Shear Flow Phenomena 1023–1028 (Technical Univ. Munich, 2007).

    Google Scholar 

  35. McConney, M. E. et al. Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J. R. Soc. Interface 6, 681–694 (2009).

    Article  Google Scholar 

  36. Gosline, J. et al. Elastic proteins: biological roles and mechanical properties. Phil. Trans. R. Soc. Lond. B 357, 121–132 (2002).

    Article  CAS  Google Scholar 

  37. Friedel, T. & Barth, F. G. Wind-sensitive interneurones in the spider CNS (Cupiennius salei): directional information processing of sensory inputs from trichobothria on the walking legs. J. Comp. Physiol. A 180, 223–233 (1997).

    Article  Google Scholar 

  38. Johnson, E. A. C., Bonser, R. H. C. & Jeronimidis, G. Recent advances in biomimetic sensing technologies. Phil. Trans. R. Soc. A 367, 1559–1569 (2009).

    Article  ADS  CAS  Google Scholar 

  39. McConney, M. E., Anderson, K. D., Brott, L. L., Naik, R. R. & Tsukruk, V. V. Bioinspired material approaches to sensing. Adv. Funct. Mater. 19, 2527–2544 (2009).

    Article  CAS  Google Scholar 

  40. Beckwith, T. G., Marangoni, R. D. & Lienhard, J. H. Mechanical Measurements (Addison-Wesley, 1993).

    Google Scholar 

  41. Bleckmann, H. in Sensory Systems Neuroscience ( eds Hara, T. & Zielinski, B. ) 411–444 (Academic, 2006).

  42. Dijkstra, M. et al. Artificial sensory hairs based on the flow sensitive receptor hairs of crickets. J. Micromech. Microeng. 15, S132–S138 (2005).

    Article  Google Scholar 

  43. Krijnen, G. J. M. et al. MEMS based hair flow-sensors as model systems for acoustic perception studies. Nanotechnology 17, S84–S89 (2006).

    Article  CAS  Google Scholar 

  44. Fan, Z. F. et al. Design and fabrication of artificial lateral line flow sensors. J. Micromech. Microeng. 12, 655–661 (2002).

    Article  ADS  Google Scholar 

  45. Barbier, C., Humphrey, J. A. C. & Paulus, J. in 2007 Proc. ASME Int. Mech. Eng. Congress and Exposition 1–6 (ASME, 2007).

    Google Scholar 

  46. Chen, N. et al. Design and characterization of artificial haircell sensor for flow sensing with ultrahigh velocity and angular sensitivity. J. Microelectromech. Syst. 16, 999–1014 (2007).

    Article  CAS  Google Scholar 

  47. den Toonder, J. et al. Artificial cilia for active micro-fluidic mixing. Lab Chip 8, 533–541 (2008).

    Article  CAS  Google Scholar 

  48. Evans, B. A. et al. Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7, 1428–1434 (2007).

    Article  ADS  CAS  Google Scholar 

  49. Suh, J. W. et al. CMOS integrated ciliary actuator array as a general-purpose micromanipulation tool for small objects. J. Microelectromech. Syst. 8, 483–496 (1999).

    Article  Google Scholar 

  50. Reyssat, E. & Mahadevan, L. Hygromorphs: from pine cones to biomimetic bilayers. J. R. Soc. Interface 6, 951–957 (2009). This paper explores possible ways of generating hygromorphic actuators based on pine cone movement.

    Article  CAS  Google Scholar 

  51. Haupt, W. Bewegungsphysiologie der Pflanzen (Thieme, 1977).

    Google Scholar 

  52. Burgert, I. & Fratzl, P. Actuation systems in plants as prototypes for bio-inspired devices. Phil. Trans. R. Soc. A 367, 1541–1557 (2009).

    Article  ADS  CAS  Google Scholar 

  53. Wheeler, T. D. & Stroock, A. D. The transpiration of water at negative pressures in a synthetic tree. Nature 455, 208–212 (2008).

    Article  ADS  CAS  Google Scholar 

  54. Scholander, P. F., Hammel, H. T., Bradstreet, E. D. & Hemmingsen, E. A. Sap pressure in vascular plants: negative hydrostatic pressure can be measured in plants. Science 148, 339–346 (1965).

    Article  ADS  CAS  Google Scholar 

  55. Skotheim, J. M. & Mahadevan, L. Physical limits and design principles for plant and fungal movements. Science 308, 1308–1310 (2005).

    Article  ADS  CAS  Google Scholar 

  56. Gülch, R. W. Force–velocity relations in human skeletal muscle. Int. J. Sports Med. 15 (suppl. 1), 2–10 (1994).

    Article  Google Scholar 

  57. Hill, A. V. The mechanics of active muscle. Proc. R. Soc. Lond. B 141, 104–117 (1953).

    Article  ADS  CAS  Google Scholar 

  58. Pennycuick, C. J. Newton Rules Biology: A Physical Approach to Biological Problems 30–39 (Oxford Univ. Press, 1992).

    Google Scholar 

  59. Dawson, C., Vincent, J. F. V. & Rocca, A. M. How pine cones open. Nature 390, 668 (1997).

    Article  ADS  CAS  Google Scholar 

  60. Elbaum, R., Zaltzman, L., Burgert, I. & Fratzl, P. The role of wheat awns in the seed dispersal unit. Science 316, 884–886 (2007).

    Article  ADS  CAS  Google Scholar 

  61. Elbaum, R., Gorb, S. & Fratzl, P. Structures in the cell wall that enable hygroscopic movement of wheat awns. J. Struct. Biol. 164, 101–107 (2008).

    Article  CAS  Google Scholar 

  62. Kulić, I. M., Mani, M., Mohrbach, H., Thaokar, R. & Mahadevan, L. Botanical ratchets. Proc. R. Soc. B 276, 2243–2247 (2009).

    Article  Google Scholar 

  63. Färber, J., Lichtenegger, H. C., Reiterer, A., Stanzl-Tschegg, S. & Fratzl, P. Cellulose microfibril angles in a spruce branch and mechanical implications. J. Mater. Sci. 36, 5087–5092 (2001).

    Article  ADS  Google Scholar 

  64. Fratzl, P., Elbaum, R. & Burgert, I. Cellulose fibrils direct plant organ movements. Faraday Discuss. 139, 275–282 (2008). This paper gives a theoretical description of the biomimetic concept for an actuation system based on fibre-reinforced hydrogel systems.

    Article  ADS  CAS  Google Scholar 

  65. Burgert, I., Eder, M., Gierlinger, N. & Fratzl, P. Tensile and compressive stresses in tracheids are induced by swelling based on geometrical constraints of the wood cell. Planta 226, 981–987 (2007).

    Article  CAS  Google Scholar 

  66. Goswami, L. et al. Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. Plant J. 56, 531–538 (2008).

    Article  CAS  Google Scholar 

  67. Pokroy, B., Kang, S. H., Mahadevan, L. & Aizenberg, J. Self-organization of a mesoscale bristle into ordered, hierarchical helical assemblies. Science 323, 237–240 (2009).

    Article  CAS  Google Scholar 

  68. Forterre, Y., Skotheim, J. M., Dumais, J. & Mahadevan, L. How the Venus flytrap snaps. Nature 433, 421–425 (2005).

    Article  ADS  CAS  Google Scholar 

  69. Seidel, R. et al. Mapping fibre orientation in complex-shaped biological systems with micrometre resolution by scanning X-ray microdiffraction. Micron 39, 198–205 (2008).

    Article  Google Scholar 

  70. Schwille, P. & Diez, S. Synthetic biology of minimal systems. Crit. Rev. Biochem. Mol. Biol. 44, 223–242 (2009).

    Article  CAS  Google Scholar 

  71. Li, D. B. et al. Molecular, supramolecular, and macromolecular motors and artificial muscles. Mater. Res. Soc. Bull. 34, 671–681 (2009).

    Article  Google Scholar 

  72. Whitesides, G. M. & Lipomi, D. J. Soft nanotechnology: 'structure' vs. 'function'. Faraday Discuss. 143, 373–384 (2009).

    Article  ADS  CAS  Google Scholar 

  73. Dong, L. X., Subramanian, A. & Nelson, B. J. Carbon nanotubes for nanorobotics. Nano Today 2, 12–21 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The work of F.G.B. was generously supported by the Austrian Science Fund and the BioSenSE programme of the US Defense Advanced Research Projects Agency. The productive collaboration with engineers, in particular J. A. C. Humphrey, F. G. Rammerstorfer and V. V. Tsukruk and their research groups, is gratefully acknowledged. P.F. was supported by the Alexander von Humboldt Foundation in the framework of the Max Planck Research Prize. He is grateful for discussions with, and advice from, co–workers and colleagues, in particular I. Burgert, R. Elbaum, O. Paris, J. Dunlop and L. Mahadevan.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints. Correspondence should be addressed to P. F. (fratzl@mpikg.mpg.de) or F.G.B. (friedrich.g.barth@univie.ac.at).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fratzl, P., Barth, F. Biomaterial systems for mechanosensing and actuation. Nature 462, 442–448 (2009). https://doi.org/10.1038/nature08603

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08603

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing