Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

TET enzymes, TDG and the dynamics of DNA demethylation

Abstract

DNA methylation has a profound impact on genome stability, transcription and development. Although enzymes that catalyse DNA methylation have been well characterized, those that are involved in methyl group removal have remained elusive, until recently. The transformative discovery that ten-eleven translocation (TET) family enzymes can oxidize 5-methylcytosine has greatly advanced our understanding of DNA demethylation. 5-Hydroxymethylcytosine is a key nexus in demethylation that can either be passively depleted through DNA replication or actively reverted to cytosine through iterative oxidation and thymine DNA glycosylase (TDG)-mediated base excision repair. Methylation, oxidation and repair now offer a model for a complete cycle of dynamic cytosine modification, with mounting evidence for its significance in the biological processes known to involve active demethylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TET and TDG function in oxidation and excision of modified C bases.
Figure 2: A complete pathway for dynamic modifications of C.
Figure 3: DNA methylation dynamics in pre-implantation embryos and primordial germ cells.

Similar content being viewed by others

References

  1. Goll, M. G. & Bestor, T. H. Eukaryotic cytosine methyltransferases. Annu. Rev. Biochem. 74, 481–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Klose, R. J. & Bird, A. P. Genomic DNA methylation: the mark and its mediators. Trends Biochem. Sci. 31, 89–97 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Bestor, T. H. & Bourc'his, D. Transposon silencing and imprint establishment in mammalian germ cells. Cold Spring Harb. Symp. Quant. Biol. 69, 381–387 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Jaenisch, R. & Bird, A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nature Genet. 33 (suppl.), 245–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, S. C. & Zhang, Y. Active DNA demethylation: many roads lead to Rome. Nature Rev. Mol. Cell Biol. 11, 607–620 (2010).

    Article  CAS  Google Scholar 

  6. Ooi, S. K. & Bestor, T. H. The colorful history of active DNA demethylation. Cell 133, 1145–1148 (2008).

    CAS  PubMed  Google Scholar 

  7. Surani, M. A. & Hajkova, P. Epigenetic reprogramming of mouse germ cells toward totipotency. Cold Spring Harb. Symp. Quant. Biol. 75, 211–218 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Jenkins, T. G. & Carrell, D. T. Dynamic alterations in the paternal epigenetic landscape following fertilization. Front. Genet. 3, 143 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mayer, W., Niveleau, A., Walter, J., Fundele, R. & Haaf, T. Demethylation of the zygotic paternal genome. Nature 403, 501–502 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Hackett, J. A., Zylicz, J. J. & Surani, M. A. Parallel mechanisms of epigenetic reprogramming in the germline. Trends Genet. 28, 164–174 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Kangaspeska, S. et al. Transient cyclical methylation of promoter DNA. Nature 452, 112–115 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Métivier, R. et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50 (2008).

    Article  ADS  PubMed  CAS  Google Scholar 

  14. Thillainadesan, G. et al. TGF-β-dependent active demethylation and expression of the p15ink4b tumor suppressor are impaired by the ZNF217/CoREST complex. Mol. Cell 46, 636–649 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Bhutani, N., Burns, D. M. & Blau, H. M. DNA demethylation dynamics. Cell 146, 866–872 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Nabel, C. S., Manning, S. A. & Kohli, R. M. The curious chemical biology of cytosine: deamination, methylation, and oxidation as modulators of genomic potential. ACS Chem. Biol. 7, 20–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009). This manuscript reports on the discovery of TET enzymes and their biochemical ability to convert 5mC to 5hmC.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ito, S. et al. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010). This report describes the discovery of a role for TET enzymes in 5mC oxidation within ES cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kriaucionis, S. & Heintz, N. The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 324, 929–930 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Borst, P. & Sabatini, R. Base J: discovery, biosynthesis, and possible functions. Annu. Rev. Microbiol. 62, 235–251 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Liu, C. K., Hsu, C. A. & Abbott, M. T. Catalysis of three sequential dioxygenase reactions by thymine 7-hydroxylase. Arch. Biochem. Biophys. 159, 180–187 (1973).

    Article  CAS  PubMed  Google Scholar 

  22. Smiley, J. A., Kundracik, M., Landfried, D. A., Barnes, V. R. S. & Axhemi, A. A. Genes of the thymidine salvage pathway: thymine-7-hydroxylase from a Rhodotorula glutinis cDNA library and iso-orotate decarboxylase from Neurospora crassa. Biochim. Biophys. Acta 1723, 256–264 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Iyer, L. M., Tahiliani, M., Rao, A. & Aravind, L. Prediction of novel families of enzymes involved in oxidative and other complex modifications of bases in nucleic acids. Cell Cycle 8, 1698–1710 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Ono, R. et al. LCX, leukemia-associated protein with a CXXC domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia having t(10;11)(q22;q23). Cancer Res. 62, 4075–4080 (2002).

    CAS  PubMed  Google Scholar 

  25. Penn, N. W., Suwalski, R., O'Riley, C., Bojanowski, K. & Yura, R. The presence of 5-hydroxymethylcytosine in animal deoxyribonucleic acid. Biochem. J. 126, 781–790 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Globisch, D. et al. Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS ONE 5, e15367 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song, C. X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nature Biotechnol. 29, 68–72 (2011).

    Article  CAS  Google Scholar 

  28. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011). This report describes the discovery that TET can iteratively oxidize 5mC to 5hmC, 5fC and 5caC.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. He, Y. F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011). This manuscript shows the generation of 5caC by TET and its excision by TDG.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Williams, R. T. & Wang, Y. A density functional theory study on the kinetics and thermodynamics of N-glycosidic bond cleavage in 5-substituted 2´-deoxycytidines. Biochemistry 51, 6458–6462 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Hashimoto, H., Zhang, X. & Cheng, X. Selective excision of 5-carboxylcytosine by a thymine DNA glycosylase mutant. J. Mol. Biol. 425, 971–976 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Loenarz, C. & Schofield, C. J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 36, 7–18 (2011).

    Article  CAS  PubMed  Google Scholar 

  33. Xu, Y. et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151, 1200–1213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, H. et al. TET1 is a DNA-binding protein that modulates DNA methylation and gene transcription via hydroxylation of 5-methylcytosine. Cell Res. 20, 1390–1393 (2010).

    Article  ADS  PubMed  Google Scholar 

  35. Ko, M. et al. Modulation of TET2 expression and 5-methylcytosine oxidation by the CXXC domain protein IDAX. Nature 497, 122–126 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schiesser, S. et al. Mechanism and stem-cell activity of 5-carboxycytosine decarboxylation determined by isotope tracing. Angew. Chem. Int. Edn Engl. 51, 6516–6520 (2012).

    Article  CAS  Google Scholar 

  37. Liutkeviciute, Z., Lukinavicius, G., Masevicius, V., Daujotyte, D. & Klimasauskas, S. Cytosine-5-methyltransferases add aldehydes to DNA. Nature Chem. Biol. 5, 400–402 (2009).

    CAS  Google Scholar 

  38. Niehrs, C. & Schafer, A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol. 22, 220–227 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Ma, D. K., Guo, J. U., Ming, G. L. & Song, H. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 8, 1526–1531 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Fromme, J. C. & Verdine, G. L. Base excision repair. Adv. Protein Chem. 69, 1–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Hajkova, P. et al. Genome-wide reprogramming in the mouse germ line entails the base excision repair pathway. Science 329, 78–82 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Gehring, M., Reik, W. & Henikoff, S. DNA demethylation by DNA repair. Trends Genet. 25, 82–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Wossidlo, M. et al. Dynamic link of DNA demethylation, DNA strand breaks and repair in mouse zygotes. EMBO J. 29, 1877–1888 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu, J. K. Active DNA demethylation mediated by DNA glycosylases. Annu. Rev. Genet. 43, 143–166 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dalton, S. R. & Bellacosa, A. DNA demethylation by TDG. Epigenomics 4, 459–467 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. Cortázar, D. et al. Embryonic lethal phenotype reveals a function of TDG in maintaining epigenetic stability. Nature 470, 419–423 (2011).

    Article  ADS  PubMed  CAS  Google Scholar 

  47. Cortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cortázar, D., Kunz, C., Saito, Y., Steinacher, R. & Schar, P. The enigmatic thymine DNA glycosylase. DNA Repair (Amst.) 6, 489–504 (2007). References 47 and 48 demonstrate that deletion of TDG is associated with embryonic lethality and epigenetic abnormalities.

    Article  CAS  Google Scholar 

  49. Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bhutani, N. et al. Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  51. Popp, C. et al. Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature 463, 1101–1105 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kumar, R. et al. AID stabilizes stem-cell phenotype by removing epigenetic memory of pluripotency genes. Nature 500, 89–92 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201–1212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Jin, S. G., Guo, C. & Pfeifer, G. P. GADD45A does not promote DNA demethylation. PLoS Genet. 4, e1000013 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wong, E. et al. Mbd4 inactivation increases C-T transition mutations and promotes gastrointestinal tumor formation. Proc. Natl Acad. Sci. USA 99, 14937–14942 (2002).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nabel, C. S. et al. AID/APOBEC deaminases disfavor modified cytosines implicated in DNA demethylation. Nature Chem. Biol. 8, 751–758 (2012).

    Article  CAS  Google Scholar 

  58. Rangam, G., Schmitz, K. M., Cobb, A. J. & Petersen-Mahrt, S. K. AID enzymatic activity is inversely proportional to the size of cytosine C5 orbital cloud. PLoS ONE 7, e43279 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bennett, M. T. et al. Specificity of human thymine DNA glycosylase depends on N-glycosidic bond stability. J. Am. Chem. Soc. 128, 12510–12519 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Maiti, A. & Drohat, A. C. Thymine DNA glycosylase can rapidly excise 5-formylcytosine and 5-carboxylcytosine: potential implications for active demethylation of CpG sites. J. Biol. Chem. 286, 35334–35338 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang, L. et al. Thymine DNA glycosylase specifically recognizes 5-carboxylcytosine-modified DNA. Nature Chem. Biol. 8, 328–330 (2012).

    Article  CAS  Google Scholar 

  62. Gu, T. P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011). This report demonstrates that TET3 is responsible for paternal genome 5mC oxidation in zygotes.

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Inoue, A. & Zhang, Y. Replication-dependent loss of 5-hydroxymethylcytosine in mouse preimplantation embryos. Science 334, 194 (2011). This report demonstrates that 5hmC generated in zygotes is passively diluted during preimplantation development.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Iqbal, K., Jin, S. G., Pfeifer, G. P. & Szabo, P. E. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. Proc. Natl Acad. Sci. USA 108, 3642–3647 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wossidlo, M. et al. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming. Nature Commun. 2, 241 (2011).

    Article  ADS  CAS  Google Scholar 

  66. Inoue, A., Shen, L., Dai, Q., He, C. & Zhang, Y. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development. Cell Res. 21, 1670–1676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Smith, Z. D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Nakamura, T. et al. PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486, 415–419 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  69. Hackett, J. A. et al. Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339, 448–452 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  70. Seisenberger, S. et al. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol. Cell 48, 849–862 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Yamaguchi, S. et al. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during germ cell reprogramming. Cell Res. 23, 329–339 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kagiwada, S., Kurimoto, K., Hirota, T., Yamaji, M. & Saitou, M. Replication-coupled passive DNA demethylation for the erasure of genome imprints in mice. EMBO J. 32, 340–353 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Yamaguchi, S. et al. Tet1 controls meiosis by regulating meiotic gene expression. Nature 492, 443–447 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dawlaty, M. M. et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9, 166–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Vincent, J. J. et al. Stage-specific roles for Tet1 and Tet2 in DNA demethylation in primordial germ cells. Cell Stem Cell 12, 470–478 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li, Z. et al. Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118, 4509–4518 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Quivoron, C. et al. TET2 inactivation results in pleiotropic hematopoietic abnormalities in mouse and is a recurrent event during human lymphomagenesis. Cancer Cell 20, 25–38 (2011).

    Article  CAS  PubMed  Google Scholar 

  79. Dawlaty, M. M. et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Koh, K. P. et al. Tet1 and Tet2 regulate 5-hydroxymethylcytosine production and cell lineage specification in mouse embryonic stem cells. Cell Stem Cell 8, 200–213 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  82. Freudenberg, J. M. et al. Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Nucleic Acids Res. 40, 3364–3377 (2012).

    Article  CAS  PubMed  Google Scholar 

  83. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  84. Song, C. X., Yi, C. & He, C. Mapping recently identified nucleotide variants in the genome and transcriptome. Nature Biotechnol. 30, 1107–1116 (2012). This review details the novel methods that have been developed to quantify and sequence modified C bases in the genome.

    Article  CAS  Google Scholar 

  85. Shen, L. et al. Genome-wide analysis reveals TET- and TDG-dependent 5-methylcytosine oxidation dynamics. Cell 153, 692–706 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Song, C. X. et al. Genome-wide profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153, 678–691 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Apostolou, E. & Hochedlinger, K. Chromatin dynamics during somatic cell reprogramming. Nature 502, 462–471 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Doege, C. A. et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature 488, 652–655 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Costa, Y. et al. NANOG-dependent function of TET1 and TET2 in establishment of pluripotency. Nature 495, 370–374 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gao, Y. et al. Replacement of Oct4 by Tet1 during iPSC induction reveals an important role of DNA methylation and hydroxymethylation in reprogramming. Cell Stem Cell 12, 453–469 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Piccolo, F. M. et al. Different roles for Tet1 and Tet2 proteins in reprogramming-mediated erasure of imprints induced by EGC fusion. Mol. Cell 49, 1023–1033 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Baylin, S. B. & Jones, P. A. A decade of exploring the cancer epigenome — biological and translational implications. Nature Rev. Cancer 11, 726–734 (2011).

    Article  CAS  Google Scholar 

  93. Cimmino, L., Abdel-Wahab, O., Levine, R. L. & Aifantis, I. TET family proteins and their role in stem cell differentiation and transformation. Cell Stem Cell 9, 193–204 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Delhommeau, F. et al. Mutation in TET2 in myeloid cancers. N. Engl. J. Med. 360, 2289–2301 (2009).

    Article  PubMed  Google Scholar 

  95. Langemeijer, S. M. et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nature Genet. 41, 838–842 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Quintás-Cardama, A., Santos, F. P. & Garcia-Manero, G. Therapy with azanucleosides for myelodysplastic syndromes. Nature Rev. Clin. Oncol. 7, 433–444 (2010).

    Article  CAS  Google Scholar 

  97. Ko, M. et al. Ten-eleven-translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl Acad. Sci. USA 108, 14566–14571 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yang, H. et al. Tumor development is associated with decrease of TET gene expression and 5-methylcytosine hydroxylation. Oncogene 32, 663–669 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Ko, M. et al. Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468, 839–843 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell 18, 553–567 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Xu, W. et al. Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. Cancer Cell 19, 17–30 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Losman, J. A. et al. (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339, 1621–1625 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  103. Spruijt, C. G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Mellén, M., Ayata, P., Dewell, S., Kriaucionis, S. & Heintz, N. MeCP2 binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell 151, 1417–1430 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Yamaguchi for preparing Figure 3; D. Crawford, A. Inoue, C. Nabel, E. Schutsky and S. Yamaguchi for their helpful comments. We apologize to the people whose work cannot be cited due to space limitations. Our DNA methylation-related work is supported by the NIH (U01DK089565 and GM068804 to Y.Z., and K08-AI089242 to R.M.K.), the Rita Allen Foundation (R.M.K.) and HHMI (Y.Z.). Y.Z. is an investigator of the HHMI.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rahul M. Kohli or Yi Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permission information is available at www.nature.com/reprints.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohli, R., Zhang, Y. TET enzymes, TDG and the dynamics of DNA demethylation. Nature 502, 472–479 (2013). https://doi.org/10.1038/nature12750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature12750

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing