Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Safeguarding pollinators and their values to human well-being

Abstract

Wild and managed pollinators provide a wide range of benefits to society in terms of contributions to food security, farmer and beekeeper livelihoods, social and cultural values, as well as the maintenance of wider biodiversity and ecosystem stability. Pollinators face numerous threats, including changes in land-use and management intensity, climate change, pesticides and genetically modified crops, pollinator management and pathogens, and invasive alien species. There are well-documented declines in some wild and managed pollinators in several regions of the world. However, many effective policy and management responses can be implemented to safeguard pollinators and sustain pollination services.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pollination service contribution to the crop market output in terms of US$ per hectare of added production.
Figure 2: The International Union for Conservation of Nature (IUCN) Red List status of wild pollinator taxa.
Figure 3: Annual growth rate (percentage per year) in the number of honeybee hives for countries reporting data to the Food and Agriculture Organization (FAO) between 1961 and 2012.
Figure 4: Agriculture dependence on pollinators in 1961 and 2012.
Figure 5: Drivers, risks and responses to pollinator decline.

Similar content being viewed by others

References

  1. Klein, A. M. et al. Importance of pollinators in changing landscapes for world crops. Proc. R. Soc. B 274, 303–313 (2007)

    PubMed  Google Scholar 

  2. Discover Life’s Bee Species Guide and World Checklist; http://www.discoverlife.org/mp/20q?guide=Apoidea_species&flags=HAS (Ascher and Pickering 2014)

  3. Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013). This study is the first to show consistent benefits from wild insects to crop pollination across the globe and that those benefits cannot be replaced by increasing the abundance of a single managed species such as honeybees

    ADS  CAS  PubMed  Google Scholar 

  4. Lautenbach, S., Seppelt, R., Liebscher, J. & Dormann, C. F. Spatial and temporal trends of global pollination benefit. PLoS One 7, e35954 (2012). This study is the most comprehensive and spatially explicit assessment of the direct economic benefits of pollination to global agriculture and accounts for differences in the effective spending power of different countries

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  5. Potts, S. G. et al. IPBES. The Assessment Report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on Pollinators, Pollination and Food Production; http://www.ipbes.net/node/44781 (2016)

  6. Convention on Biological Diversity (CBD). UNEP Decisions Adopted by the Conference of the Parties to the Convention on Biological Diversity at its Fifth Meeting (UNEP/CBD/COP/5/23/Annex III), Decision V/5; https://www.cbd.int/doc/decisions/COP-05-dec-en.pdf (Nairobi, 2000)

  7. Gallai, N., Salles, J. M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009)

    Google Scholar 

  8. Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. How much does agriculture depend on pollinators? Lessons from long-term trends in crop production. Ann. Bot. 103, 1579–1588 (2009). This study is the first to take into account the partial dependence of most crops on pollinators in quantifying the effect of total loss of pollinators on global agricultural production, cultivated area and crop production diversity

    PubMed  PubMed Central  Google Scholar 

  9. Garibaldi, L. A., Aizen, M. A., Klein, A. M., Cunningham, S. A. & Harder, L. D. Global growth and stability of agricultural yield decrease with pollinator dependence. Proc. Natl Acad. Sci. USA 108, 5909–5914 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith, M. R., Singh, G. M., Mozaffarian, D. & Myers, S. S. Effects of decreases of animal pollinators on human nutrition and global health: a modelling analysis. Lancet 386, 1964–1972 (2015)

    PubMed  Google Scholar 

  11. Chaplin-Kramer, R. et al. Global malnutrition overlaps with pollinator-dependent micronutrient production. Proc. R. Soc. B 281, 20141799 (2014)

    PubMed  PubMed Central  Google Scholar 

  12. Bauer, D. M. & Wing, I. S. The macroeconomic cost of catastrophic pollinator declines. Ecol. Econ. 126, 1–13 (2016). This study represents the most complete assessment of the consumer welfare impacts of pollinator losses both within and beyond crop markets

    Google Scholar 

  13. Hanley, N., Breeze, T. D., Ellis, C. & Goulson, D. Measuring the economic value of pollination services: principles, evidence and knowledge gaps. Ecosyst. Serv. 14, 124–132 (2015)

    Google Scholar 

  14. Altieri, M. A. Agroecology: the science of natural resource management for poor farmers in marginal environments. Agric. Ecosyst. Environ. 93, 1–24 (2002)

    Google Scholar 

  15. The World Bank. Agriculture and rural development; http://data.worldbank.org/topic/agriculture-and-rural-development (2015)

  16. Steward, P. R. et al. Pollination and biological control research: are we neglecting two billion smallholders. Agric. Food Security 3, 5 (2014)

    Google Scholar 

  17. Garibaldi, L. A. et al. Mutually beneficial pollinator diversity and crop yield outcomes in small and large farms. Science 351, 388–391 (2016)

    ADS  CAS  PubMed  Google Scholar 

  18. Rehel, S. A. et al. Benefits of biotic pollination for non-timber forest products and cultivated plants. Conserv. Soc. 7, 213–219 (2009)

    Google Scholar 

  19. Breeze, T. D. et al. Agricultural policies exacerbate honeybee pollination service supply-demand mismatches across Europe. PLoS One 9, e82996 (2014)

    ADS  PubMed  PubMed Central  Google Scholar 

  20. Gupta, R. K., Reybroeck, W., van Veen, J. W. & Gupta, A. Beekeeping for Poverty Alleviation and Livelihood Security. Vol. 1: Technological Aspects of Beekeeping (Springer, 2014)

  21. Crane, E. The World History of Beekeeping and Honey Hunting (Routledge, 1999)

  22. Hilmi, M., Bradbear, N. & Mejia, D. Beekeeping and sustainable livelihoods. Food and Agriculture Organisation of the United Nations. Rural Infrastructure and Agro-Industries Division, Rome, Italy. (2011)

  23. Jull, A. B. et al. Honey as a topical treatment for wounds. Cochrane Database Syst. Rev. 3, CD005083 (2015)

    Google Scholar 

  24. Junge, X., Schüpbach, B., Walter, T., Schmid, B. & Lindemann-Matthies, P. Aesthetic quality of agricultural landscape elements in different seasonal stages in Switzerland. Landsc. Urban Plan. 133, 67–77 (2015)

    Google Scholar 

  25. Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS One 8, e66993 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nieto, A. et al. European Red List of Bees (Luxembourg: Publication Office of the European Union, Belgium, 2014)

  27. van Swaay, C. et al. European Red List of Butterflies (Luxembourg: Publication Office of the European Union, Spain, 2010)

  28. Biesmeijer, J. C. et al. Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313, 351–354 (2006)

    ADS  CAS  PubMed  Google Scholar 

  29. Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. Proc. Natl Acad. Sci. USA 108, 662–667 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bommarco, R., Lundin, O., Smith, H. G. & Rundlöf, M. Drastic historic shifts in bumble-bee community composition in Sweden. Proc. R. Soc. B 279, 309–315 (2012)

    PubMed  Google Scholar 

  31. Bartomeus, I. et al. Historical changes in northeastern US bee pollinators related to shared ecological traits. Proc. Natl Acad. Sci. USA 110, 4656–4660 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Carvalheiro, L. G. et al. Species richness declines and biotic homogenisation have slowed down for NW-European pollinators and plants. Ecol. Lett. 16, 870–878 (2013). This study uses 32 million data points to assess shifts in diversity of pollinator groups and plants in the Netherlands, the United Kingdom and Belgium over the last 80 years

    PubMed  PubMed Central  Google Scholar 

  33. Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl Acad. Sci. USA 113, 140–145 (2016)

    ADS  CAS  PubMed  Google Scholar 

  34. Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015)

    ADS  CAS  PubMed  Google Scholar 

  35. Aizen, M. A. & Harder, L. D. The global stock of domesticated honey bees is growing slower than agricultural demand for pollination. Curr. Biol. 19, 915–918 (2009)

    CAS  PubMed  Google Scholar 

  36. Neumann, P. & Carreck, N. L. Honey bee colony losses. J. Apic. Res. 49, 1–6 (2010)

    Google Scholar 

  37. Potts, S. G. et al. Declines of managed honeybees and beekeepers in Europe. J. Apic. Res. 49, 15–22 (2010)

    Google Scholar 

  38. Lever, J. J., van Nes, E. H., Scheffer, M. & Bascompte, J. The sudden collapse of pollinator communities. Ecol. Lett. 17, 350–359 (2014)

    PubMed  Google Scholar 

  39. Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008)

    CAS  PubMed  Google Scholar 

  40. Ollerton, J., Winfree, R. & Tarrant, T. How many flowering plants are pollinated by animals? Oikos 120, 321–326 (2011)

    Google Scholar 

  41. Scheper, J. et al. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in the Netherlands. Proc. Natl Acad. Sci. USA 111, 17552–17557 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pauw, A. & Hawkins, J. A. Reconstruction of historical pollination rates reveals linked declines of pollinators and plants. Oikos 120, 344–349 (2011)

    Google Scholar 

  43. Gill, R. J. et al. Protecting an ecosystem service: approaches to understanding and mitigating threats to wild insect pollinators. Adv. Ecol. Res 54, 135–206 (2016)

    Google Scholar 

  44. Burkle, L. A., Marlin, J. C. & Knight, T. M. Plant–pollinator interactions over 120 years: loss of species, co-occurrence, and function. Science 339, 1611–1615 (2013)

    ADS  CAS  PubMed  Google Scholar 

  45. Senapathi, D. et al. The impact of over 80 years of land cover changes on bee and wasp pollinator communities in England. Proc. R. Soc. B 282, 20150294 (2015)

    PubMed  PubMed Central  Google Scholar 

  46. Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010)

    PubMed  Google Scholar 

  47. Vanbergen, A. J. & the Insect Pollinators Initiative. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ 11, 251–259 (2013)

    Google Scholar 

  48. Baude, M. et al. Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature 530, 85–88 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kennedy, C. M. et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol. Lett. 16, 584–599 (2013). This study is based on detailed spatial modelling of data from 39 crop systems globally to understand the relative influence of landscape composition, landscape configuration, farm management and their interactions on wild bee abundance and richness

    PubMed  Google Scholar 

  50. Collison, E., Hird, H., Cresswell, J. & Tyler, C. Interactive effects of pesticide exposure and pathogen infection on bee health – a critical analysis. Biol. Rev. Camb. Philos. Soc. 91, 1006–1019 (2016)

    PubMed  Google Scholar 

  51. Schneider, M. K. et al. Gains to species diversity in organically farmed fields are not propagated at the farm level. Nat. Commun. 5, 4151 (2014)

    ADS  CAS  PubMed  Google Scholar 

  52. Carvell, C., Bourke, A. F. G., Osborne, J. L. & Heard, M. S. Effects of an agri-environment scheme on bumblebee reproduction at local and landscape scales. Basic Appl. Ecol. 16, 519–530 (2015)

    Google Scholar 

  53. Jönsson, A. M. et al. Sown flower strips in southern Sweden increase abundances of wild bees and hoverflies in the wider landscape. Biol. Conserv. 184, 51–58 (2015)

    Google Scholar 

  54. Holzschuh, A., Steffan-Dewenter, I., Kleijn, D. & Tscharntke, T. Diversity of flower-visiting bees in cereal fields: effects of farming system, landscape composition and regional context. J. Appl. Ecol. 44, 41–49 (2007)

    Google Scholar 

  55. Tuck, S. L. et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. J. Appl. Ecol. 51, 746–755 (2014)

    PubMed  PubMed Central  Google Scholar 

  56. Scheper, J. et al. Environmental factors driving the effectiveness of European agri-environmental measures in mitigating pollinator loss–a meta-analysis. Ecol. Lett. 16, 912–920 (2013). This is the first study to provide an overview of the effectiveness of a range of agri-environment options for supporting local pollinator richness and abundance

    PubMed  Google Scholar 

  57. Blaauw, B. R. & Isaacs, R. Flower plantings increase wild bee abundance and the pollination services provided to a pollination-dependent crop. J. Appl. Ecol. 51, 890–898 (2014)

    Google Scholar 

  58. Ponisio, L. C. et al. Diversification practices reduce organic to conventional yield gap. Proc. R. Soc. B 282, 20141396 (2015)

    PubMed  PubMed Central  Google Scholar 

  59. Morandin, L. A. & Winston, M. L. Wild bee abundance and seed production in conventional, organic, and genetically modified canola. Ecol. Appl. 15, 871–881 (2005)

    Google Scholar 

  60. Andersson, G. K. S., Rundlöf, M. & Smith, H. G. Organic farming improves pollination success in strawberries. PLoS One 7, e31599 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pywell, R. F. et al. Wildlife-friendly farming increases crop yield: evidence for ecological intensification. Proc. R. Soc. B 282, 20151740 (2015). The first to test farm-scale ‘ecological intensification’, this study found no decrease in the crop yield over a five year rotation cycle on a large English farm, despite taking up to 8% of land out of production to support ecological functions

    PubMed  PubMed Central  Google Scholar 

  62. van der Ploeg, J. D. Peasant-driven agricultural growth and food sovereignty. J. Peasant Stud. 41, 999–1030 (2014)

    Google Scholar 

  63. Gavin, M. C. et al. Defining biocultural approaches to conservation. Trends Ecol. Evol. 30, 140–145 (2015)

    PubMed  Google Scholar 

  64. Gómez-Baggethun, E. & Reyes-García, V. Reinterpreting change in traditional ecological knowledge. Hum. Ecol. 41, 643–647 (2013)

    Google Scholar 

  65. Lyver, P., Perez, E., Carneiro da Cunha, M. & Roué, M. Indigenous and Local Knowledge about Pollination and Pollinators Associated with Food Production: Outcomes from the Global Dialogue Workshophttp://unesdoc.unesco.org/images/0023/002338/233811e.pdf ((Panama 1–5 December 2014) UNESCO: Paris, 2015)

  66. Godfray, H. C. J. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. B 281, 20140558 (2014)

    PubMed  PubMed Central  Google Scholar 

  67. van der Sluijs, J. P. et al. Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ. Sci. Pollut. Res. 22, 148–154 (2015)

    CAS  Google Scholar 

  68. Park, M. G., Blitzer, E. J., Gibbs, J., Losey, J. E. & Danforth, B. N. Negative effects of pesticides on wild bee communities can be buffered by landscape context. Proc. R. Soc. B 282, 20150299 (2015)

    PubMed  PubMed Central  Google Scholar 

  69. Gabriel, D. & Tscharntke, T. Insect pollinated plants benefit from organic farming. Agric. Ecosyst. Environ. 118, 43–48 (2007)

    Google Scholar 

  70. Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res 22, 68–102 (2015)

    CAS  Google Scholar 

  71. Godfray, H. C. J. et al. A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc. R. Soc. Lond. B 282, 20151821 (2015)

    Google Scholar 

  72. Stanley, D. A. et al. Neonicotinoid pesticide exposure impairs crop pollination services provided by bumblebees. Nature 528, 548–550 (2015)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  73. Rundlöf, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521, 77–80 (2015). In a landscape experiment consisting of eight farms paired with controls, this study showed that actual field exposure to a neonicotinoid–pyrethroid seed treatment reduced wild bee densities, nesting success, bumblebee colony growth and reproduction, but did not measurably affect honeybee colony strength

    ADS  PubMed  Google Scholar 

  74. Gill, R. J., Ramos-Rodriguez, O. & Raine, N. E. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491, 105–108 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fischer, D. & Moriarty, T. Pesticide Risk Assessment for Pollinators (John Wiley & Sons, 2014)

  77. Cross, P. Pesticide hazard trends in orchard fruit production in Great Britain from 1992 to 2008: a time-series analysis. Pest Manag. Sci. 69, 768–774 (2013)

    ADS  CAS  PubMed  Google Scholar 

  78. Ekström, G. & Ekbom, B. Pest control in agro-ecosystems: an ecological approach. Crit. Rev. Plant Sci. 30, 74–94 (2011)

    Google Scholar 

  79. Johansen, E., Hooven, L. A. & Sagili, R. R. How to Reduce Bee Poisoning from Pesticides (Oregon State Univ. Extension Service, 2013)

  80. Waddington, H. et al. Farmer field schools for improving farming practices and farmer outcomes in low- and middle-income countries: a systematic review. Campbell Syst. Rev. 10, 1–335 (2014)

    Google Scholar 

  81. Barzman, M. & Dachbrodt-Saaydeh, S. Comparative analysis of pesticide action plans in five European countries. Pest Manag. Sci. 67, 1481–1485 (2011)

    CAS  PubMed  Google Scholar 

  82. Ekström, G. & Ekbom, B. Can the IOMC revive the ‘FAO code’ and take stakeholder initiatives to the developing world? Outlooks Pest Manag. 21, 125–131 (2010)

    Google Scholar 

  83. Mommaerts, V., Jans, K. & Smagghe, G. Impact of Bacillus thuringiensis strains on survival, reproduction and foraging behaviour in bumblebees (Bombus terrestris). Pest Manag. Sci. 66, 520–525 (2010)

    CAS  PubMed  Google Scholar 

  84. Bohan, D. A. et al. Effects on weed and invertebrate abundance and diversity of herbicide management in genetically modified herbicide-tolerant winter-sown oilseed rape. Proc. R. Soc. B 272, 463–474 (2005)

    PubMed  PubMed Central  Google Scholar 

  85. Marvier, M., McCreedy, C., Regetz, J. & Kareiva, P. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316, 1475–1477 (2007)

    ADS  CAS  PubMed  Google Scholar 

  86. Lu, Y. et al. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328, 1151–1154 (2010)

    ADS  CAS  PubMed  Google Scholar 

  87. Barfoot, P. & Brookes, G. Key global environmental impacts of genetically modified (GM) crop use 1996–2012. GM Crops Food 5, 149–160 (2014)

    PubMed  PubMed Central  Google Scholar 

  88. Andow, D. A. et al. An ecologically-based method for selecting ecological indicators for assessing risks to biological diversity from genetically-engineered plants. J. Biosaf. 22, 141–156 (2013)

    Google Scholar 

  89. Wilfert, L. et al. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites. Science 351, 594–597 (2016)

    ADS  CAS  PubMed  Google Scholar 

  90. Moritz, R. F. A., Härtel, S. & Neumann, P. Global invasions of the western honeybee (Apis mellifera) and the consequences for biodiversity. Ecoscience 12, 289–301 (2005)

    Google Scholar 

  91. Dohzono, I. & Yokoyama, J. Impacts of alien bees on native plant–pollinator relationships: a review with special emphasis on plant reproduction. Appl. Entomol. Zool. (Jpn.) 45, 37–47 (2010)

    Google Scholar 

  92. Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014). This paper sampled Apis and Bombus across 26 geographically dispersed sites in the United Kingdom revealing the co-prevalence of deformed wing virus (DWV) infections and evidence of local transmission, suggesting disease spill-over from managed honeybees to wild bumblebee species

    ADS  PubMed  PubMed Central  Google Scholar 

  93. Tehel, A., Brown, M. J. F. & Paxton, R. J. Impact of managed honey bee viruses on wild bees. Curr. Opin. Virol. 19, 16–22 (2016)

    PubMed  Google Scholar 

  94. Quezada-Euán, J. J. G., de Jesús May-Itzá, W. & González-Acereto, J. A. Meliponiculture in México: problems and perspective for development. Bee World 82, 160–167 (2001)

    Google Scholar 

  95. Cook, D. C., Thomas, M. B., Cunningham, S. A., Anderson, D. L. & De Barro, P. J. Predicting the economic impact of an invasive species on an ecosystem service. Ecol. Appl. 17, 1832–1840 (2007)

    PubMed  Google Scholar 

  96. Hunter, W. et al. Large-scale field application of RNAi technology reducing Israeli acute paralysis virus disease in honey bees (Apis mellifera, Hymenoptera: Apidae). PLoS Pathogens 6, e1001160 (2010)

    PubMed  PubMed Central  Google Scholar 

  97. Hanna, C., Foote, D. & Kremen, C. Invasive species management restores a plant–pollinator mutualism in Hawaii. J. Appl. Ecol. 50, 147–155 (2013)

    Google Scholar 

  98. Traveset, A. & Richardson, D. M. Mutualistic interactions and biological invasions. Annu. Rev. Ecol. Evol. Syst. 45, 89–113 (2014)

    Google Scholar 

  99. Morales, C. L., Arbetman, M. P., Cameron, S. A. & Aizen, M. A. Rapid ecological replacement of a native bumble bee by invasive species. Front. Ecol. Environ 11, 529–534 (2013)

    Google Scholar 

  100. Sáez, A., Morales, C. L., Ramos, L. Y. & Aizen, M. A. Extremely frequent bee visits increase pollen deposition but reduce drupelet set in raspberry. J. Appl. Ecol. 51, 1603–1612 (2014)

    Google Scholar 

  101. Settele, J. et al. in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 271–359 (Cambridge Univ. Press, 2014)

  102. Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A. L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009)

    PubMed  Google Scholar 

  103. Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011)

    ADS  CAS  PubMed  Google Scholar 

  104. Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008)

    PubMed  Google Scholar 

  105. Giannini, T. C. et al. Identifying the areas to preserve passion fruit pollination service in Brazilian Tropical Savannas under climate change. Agric. Ecosyst. Environ. 171, 39–46 (2013)

    Google Scholar 

  106. Polce, C. et al. Climate-driven spatial mismatches between British orchards and their pollinators: increased risks of pollination deficits. Glob. Change Biol. 20, 2815–2828 (2014)

    ADS  Google Scholar 

  107. Settele, J., Bishop, J. & Potts, S. G. Climate change impacts on pollination. Nat. Plants 2, 16092 (2016)

    PubMed  Google Scholar 

  108. Forister, M. L. et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity. Proc. Natl Acad. Sci. USA 107, 2088–2092 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Warren, M. S. et al. Rapid responses of British butterflies to opposing forces of climate and habitat change. Nature 414, 65–69 (2001)

    ADS  CAS  PubMed  Google Scholar 

  110. Burton, I. & Lim, B. Achieving adequate adaptation in agriculture. Clim. Change 70, 191–200 (2005)

    ADS  Google Scholar 

  111. Frimpong, E. A., Gemmill-Herren, B., Gordon, I. & Kwapong, P. K. Dynamics of insect pollinators as influenced by cocoa production systems in Ghana. J. Pollinat. Ecol. 5, 74–80 (2011)

    Google Scholar 

  112. Kremen, C. & Miles, A. Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol. Soc. 17, 40 (2012)

    Google Scholar 

  113. Arias-Cóyotl, E., Stoner, K. E. & Casas, A. Effectiveness of bats as pollinators of Stenocereus stellatus (Cactaceae) in wild, managed in situ, and cultivated populations in La Mixteca Baja, central Mexico. Am. J. Bot. 93, 1675–1683 (2006)

    PubMed  Google Scholar 

  114. Padoch, C. & Pinedo-Vasquez, M. Saving slash-and-burn to save biodiversity. Biotropica 42, 550–552 (2010)

    Google Scholar 

  115. Zizumbo-Villarreal, D., Vargas-Ponce, O., Rosales-Adame, J. J. & Colunga-GarcíaMarín, P. Sustainability of the traditional management of Agave genetic resources in the elaboration of mezcal and tequila spirits in western Mexico. Genet. Resour. Crop Evol. 60, 33–47 (2013)

    Google Scholar 

  116. Hernandez, J. L., Frankie, G. W. & Thorp, R. W. Ecology of urban bees: a review of current knowledge and directions for future study. Cities Environ. 2, 3 (2009)

    Google Scholar 

  117. Lopes, A. V., Girão, L. C., Santos, B. A., Peres, C. A. & Tabarelli, M. Long-term erosion of tree reproductive trait diversity in edge-dominated Atlantic forest fragments. Biol. Conserv. 142, 1154–1165 (2009)

    Google Scholar 

  118. Berg, Å., Ahrné, K., Öckinger, E., Svensson, R. & Wissman, J. Butterflies in semi-natural pastures and power-line corridors – effects of flower richness, management, and structural vegetation characteristics. Insect Conserv. Divers. 6, 639–657 (2013)

    Google Scholar 

  119. Van Geert, A., Van Rossum, F. & Triest, L. Do linear landscape elements in farmland act as biological corridors for pollen dispersal? J. Ecol. 98, 178–187 (2010)

    Google Scholar 

  120. Kormann, U. et al. Corridors restore animal-mediated pollination in fragmented tropical forest landscapes. Proc. R. Soc. B 283, 20152347 (2016)

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Estrada for preparing the figures and the authors of the original articles for providing the data that underpin them. We are grateful to the authors and reviewers of ref. 5 for their contributions to the report.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the planning, evaluation of the literature and writing of the manuscript.

Corresponding author

Correspondence to Simon G. Potts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks R. Gill, R. Paxton and N. Raine for their contribution to the peer review of this work.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potts, S., Imperatriz-Fonseca, V., Ngo, H. et al. Safeguarding pollinators and their values to human well-being. Nature 540, 220–229 (2016). https://doi.org/10.1038/nature20588

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature20588

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing