Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Newer Methods for Characterization of Antibiotics I: Stable Isotopes in the Study of Antibiotic Synthesis

Abstract

Precursors singly and doubly labeled with stable isotopes can be used to study both the origins of antibiotic molecules and the mechanisms involved in their biosyntheses. In this review, the versatile methodology used for these approaches is discussed, using examples from the biosynthetic investigations of neomycin, ribostamycin, nybomycin and erythromycin and of two antibiotics containing the so–called m–C7N unit, pactamycin and gel–danamycin.

*The E. R. Squibb Lectures on Chemistry of Microbial Products presented at Waksman Institute of Microbiology, Rutgers University, New Brunswick, N.J. March 16, 17, 1983.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gottlieb, D. and Shaw, P.D. (eds). 1967. Antibiotics. Volume II: Biosynthesis, Springer: Berlin.

    Google Scholar 

  2. Corcoran, J.W. (ed). 1981. Antibiotics. Volume IV: Biosynthesis, Springer: Berlin.

    Google Scholar 

  3. McInnes, A.G., Walter, J.A., Wright, J.L.C. and Vining, L.C. 1976. pp. 123–178. 13C NMR biosynthetic studies. In: Topics in Carbon-13 NMR Spectroscopy, Vol. 2 G. C. Levy (ed), Wiley, New York.

    Google Scholar 

  4. Caprioli, R.M. 1972. pp. 735–776. Use of Stable Isotopes. In: Biochemical Applications of Mass Spectrometry, G. R. Waller (ed), Wiley, New York. Caprioli, R. M., Bier, D. M. 1980. Use of stable isotopes. In: Biochemical Applications of Mass Spectrometry, First Supplementary Volume, G. R. Waller and O. C. Dermer (eds), Wiley, New York.

    Google Scholar 

  5. Rinehart, K.L., Jr., Malik, J.M., Nystrom, R.F., Stroshane, R.M., Truitt, S.T., Taniguchi, M., Rolls, J.P., Haak, W.J. and Ruff, B.A. 1974. Biosynthetic incorporation of [1-13C]glucosamine and [1-13C]glucose into neomycin. J. Am. Chem. Soc. 96: 2263–2265.

    Article  CAS  Google Scholar 

  6. Rinehart, K.L., Jr., 1979. Biosynthesis and mutasynthesis of aminocyclitol antibiotics. Jpn. J. Antibiot. 32, Suppl.: S32–S-46.

    CAS  PubMed  Google Scholar 

  7. Kakinuma, K., Ogawa, Y., Sasaki, T., Seto, H. and Ōtake, N. 1981. Stereochemistry of ribostamycin biosynthesis. An application of 2H NMR spectroscopy. J. Am. Chem. Soc. 103: 5614–5616.

    Article  CAS  Google Scholar 

  8. Nadzan, A.M., Rinehart, K.L., Jr., 1976. Nybomycin. VIII. Biosynthetic origin of the central ring carbons studied by 13C-labeled substrates. J. Am. Chem. Soc. 98: 5012–5014.

    Article  CAS  Google Scholar 

  9. Nadzan, A.M., Rinehart, K.L., Jr., 1977. Nybomycin. IX. Synthetic and biosynthetic incorporation of 15N as a means of assigning the 13C nuclear magnetic resonance spectrum of nybomycin. J. Am. Chem. Soc. 99: 4647–4654.

    Article  CAS  Google Scholar 

  10. Cane, D.E., Hasler, H., Liang, T.-C. 1981. Macrolide biosynthesis. Origin of the oxygen atoms in the erythromycins. J. Am. Chem. Soc. 103: 5960–5962.

    Article  CAS  Google Scholar 

  11. Vederas, J.C. 1980. Structural dependence of 18O isotope shifts in 13C NMR spectra. J. Am. Chem. Soc. 102: 374–376.

    Article  CAS  Google Scholar 

  12. Weller, D.D., Rinehart, K.L., Jr. 1978. Biosynthesis of the antitumor antibiotic pactamycin. A methionine-derived ethyl group and a C7N unit. J. Am. Chem. Soc. 100: 6757–6760.

    Article  CAS  Google Scholar 

  13. Richards, J.H., Hendrickson, J.B. 1964. The Biosynthesis of Steroids, Terpenes, and Acetogenins, W. A. Benjamin, New York.

  14. Walker, J.B. 1971. Enzymatic reactions involved in streptomycin biosynthesis and metabolism. Lloydia 34: 363–371.

    CAS  PubMed  Google Scholar 

  15. Lederer, E. 1969. Some problems concerning biological C-alkylation reactions and phytosterol biosynthesis. Q. Rev. Chem. Soc. 23: 453–481.

    Article  CAS  Google Scholar 

  16. Rinehart, K.L., Jr., Potgieter, M., Jin, W.-Z., Pearce, C.J., Wright, D.A., Wright, J.L.C., Walter, J.A. and McInnes, A.G. 1982. pp. 171–184. Biosynthetic studies on antibiotics employing stable isotopes. In: Proc. Intl. Conf. Trends Antibiot. Res., U. Umezawa, A. L. Demain, T. Hata, and C. R. Hutchinson (eds), Jpn. Antibiot. Res. Assoc, Tokyo.

    Google Scholar 

  17. Milavetz, B., Kakinuma, K., Rinehart, K.L., Jr., Rolls, J.P. and Haak, W.J. 1973. Carbon-13 magnetic resonance spectroscopy and the biosynthesis of streptovaricin. J. Am. Chem. Soc. 95: 5793–5795.

    Article  CAS  Google Scholar 

  18. White, R.J., Martinelli, E. 1974. Ansamycin biogenesis: incorporation of [1-13C]glucose and [1-13C]glycerate into the chromophore of rifamycin S. FEES Lett. 49: 233–236.

    Article  CAS  Google Scholar 

  19. Ghisalba, O., Roos, R., Schupp, T. and N¨esch, J. 1982. Transformation of rifamycin S into rifamycins B and L. A revision of the current biosynthetic hypothesis. J. Antibiot. 35: 74–80.

    Article  CAS  Google Scholar 

  20. Kibby, J.J., McDonald, I.A. and Rickards, R.W. 1980. 3-Amino-5-hydroxybenzoic acid as a key intermediate in ansamycin and maytansinoid biosynthesis. J. Chem. Soc., Chem. Commun. 1980: 768–769.

    Article  Google Scholar 

  21. Haber, A., Johnson, R.D. and Rinehart, K.L., Jr. 1977. Biosynthetic origin of the C2 units of geldanamycin and distribution of label from D-[6-13C]glucose. J. Am. Chem. Soc. 99: 3541–3544.

    Article  CAS  Google Scholar 

  22. Rinehart, K.L., Jr., Potgieter, M. and Wright, D.A. 1982. Use of 13C-depleted glucose and homonuclear 13C-decoupling to identify the labeling pattern of the “m-C7N” unit of geldanamycin by [l3C6]glucose. J. Am. Chem. Soc. 104: 2649–2652.

    Article  CAS  Google Scholar 

  23. Hornemann, U., Eggert, J.H., Honor, D.P. 1980. Role of D-[4-14C]Erythrose and [3-14C]pyruvate in the biosynthesis of the meta-C-C6-N unit of the mitomycin antibiotics in Streptomyces verticillatus. J. Chem. Soc., Chem. Commun. 1980: 11–13.

    Article  Google Scholar 

  24. Rinehart, K.L., Jr., Potgieter, M., Delaware, D.L., Seto, H. 1981. Direct evidence from multiple 13C labeling and homonuclear decoupling for the labeling pattern by glucose of the m-aminobenzoyl (C7N) unit of pactamycin. J. Am. Chem. Soc. 103: 2099–2101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinehart, K. Newer Methods for Characterization of Antibiotics I: Stable Isotopes in the Study of Antibiotic Synthesis. Nat Biotechnol 1, 495–502 (1983). https://doi.org/10.1038/nbt0883-495

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0883-495

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing