Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeting autoantigen-specific T cells and suppression of autoimmune encephalomyelitis with receptor-modified T lymphocytes

Abstract

We demonstrate here the feasibility of antigen-specifically redirecting T cells against autoreactive T lymphocytes and thereby treating a model autoimmune disease. We created and transgenically expressed on T cells a heterodimeric chimeric receptor that genetically links an autoantigenic peptide, its restricting MHC, and the signal transduction domain of the T-cell receptor (TCR) ζ-chain. Engagement of the chimeric receptor by the TCR of autoreactive T cells activated the receptor-modified T cells in vitro and in vivo, inducing proliferation and cytolysis. Adoptively transferred receptor-modified T cells prevented and treated a model autoimmune disease, experimental allergic encephalomyelitis (EAE), even after epitope spreading had diversified the autoantigenic response. Treatment reduced disease severity and increased survival of affected animals, and was durable for >75 days. The receptor-modified cells acted both by strongly attenuating T-cell response to autoantigen as well as by shifting the residual response from an immunopathologic Th1 to a protective Th2 format.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chimeric receptor expression on T lymphocytes.
Figure 2: Stimulation of 25S89P T cells by cognate TCR.
Figure 3: Proliferation of 25S89P T cells in response to MBP89–101-specific T cells in vivo.
Figure 4: Prevention and treatment of EAE by 25S89P T cells.
Figure 5: Treatment of EAE with 25S89P T cells after epitope spread.
Figure 6: Suppression of autoantigen-specific T-cell response and cytokine shift after treatment with receptor-modified T cells.

Similar content being viewed by others

References

  1. Zamvil, S.S. & Steinman, L. The T lymphocyte in experimental allergic encephalomyelitis. Annu. Rev. Immunol. 8, 579–621 (1990).

    Article  CAS  Google Scholar 

  2. Green, E.A. & Flavell, R.A. The initiation of autoimmune diabetes. Curr. Opin. Immunol. 11, 663–669 (1999).

    Article  CAS  Google Scholar 

  3. Weyand, C.M. & Goronzy, J.J. T-cell responses in rheumatoid arthritis: systemic abnormalities–local disease. Curr. Opin. Rheumatol. 11, 210–217 (1999).

    Article  CAS  Google Scholar 

  4. Taneja, V. & David, C.S. HLA class II transgenic mice as models of human diseases. Immunol. Rev. 169, 67–79 (1999).

    Article  CAS  Google Scholar 

  5. Heslop, H.E. & Rooney, C.M. Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immunol. Rev. 157, 217–222 (1997).

    Article  CAS  Google Scholar 

  6. Mitsuyasu, R.T. et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4-ζ gene-modified autologous CD4+ and CD8+ T cells in human immunodeficiency virus-infected subjects. Blood 96, 785–793 (2000).

    Article  CAS  Google Scholar 

  7. Geiger, T.L. & Jyothi, M.D. Development and application of receptor-modified T lymphocytes for adoptive immunotherapy. Transfus. Med. Rev. 15, 21–34 (2001).

    Article  CAS  Google Scholar 

  8. Romeo, C. & Seed, B. Cellular immunity to HIV activated by CD4 fused to T-cell receptor polypeptides. Cell 64, 1037–1046 (1991).

    Article  CAS  Google Scholar 

  9. Irving, B. & Weiss, A. The cytoplasmic domain of the T-cell receptor ζ-chain is sufficient to couple to receptor-associated signal transduction pathways. Cell 64, 891–901 (1991).

    Article  CAS  Google Scholar 

  10. Eshhar, Z. Tumor-specific T-bodies: towards clinical application. Cancer Immunol. Immunother. 45, 131–136 (1997).

    Article  CAS  Google Scholar 

  11. Maher, J., Brentjens, R.J., Gunset, G., Riviere, I. & Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCR-ζ/CD28 receptor. Nat. Biotechnol. 20, 70–75 (2002).

    Article  CAS  Google Scholar 

  12. Kono, D. et al. Two minor determinants of myelin basic protein induce experimental allergic encephalomyelitis in SJL/J mice. J. Exp. Med. 168, 213–227 (1988).

    Article  CAS  Google Scholar 

  13. Kozono, K., White, J., Clements, J., Marrack, P. & Kappler, J. Production of soluble class II proteins with covalently bound single peptides. Nature 369, 151–154 (1994).

    Article  CAS  Google Scholar 

  14. Sakai, K. et al. Characterization of a major encephalitogenic T-cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J. Neuroimmunol. 19, 21–32 (1988).

    Article  CAS  Google Scholar 

  15. Greaves, D., Wilson, F., Lang, G. & Kioussis, D. Human CD2 3′-flanking sequences confer high-level, T cell-specific, position-independent gene expression in transgenic mice. Cell 56, 979–986 (1989).

    Article  CAS  Google Scholar 

  16. Festenstein, R. et al. Locus control region function and heterochromatin-induced position effect variation. Science 271, 1123–1125 (1996).

    Article  CAS  Google Scholar 

  17. Geiger, T., Leitenberg, D. & Flavell, R. The T-cell-receptor ζ-chain is sufficient for the activation and maturation of primary T lymphocytes. J. Immunol. 162, 5931–5939 (1999).

    CAS  PubMed  Google Scholar 

  18. Martin, R. & McFarland, H. Immunological aspects of experimental allergic encephalomyelitis and multiple sclerosis. Crit. Rev. Clin. Lab. Sci. 32, 121–182 (1995).

    Article  CAS  Google Scholar 

  19. Vanderlugt, C.L. & Miller, S.D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    Article  CAS  Google Scholar 

  20. Garren, H. et al. Combination of gene delivery and DNA vaccination to protect from and reverse Th1 autoimmune disease via deviation to the Th2 pathway. Immunity 15, 15–22 (2001).

    Article  CAS  Google Scholar 

  21. Tarner, I.H. & Fathman, C.G. Gene therapy in autoimmune disease. Curr. Opin. Immunol. 13, 676–682 (2001).

    Article  CAS  Google Scholar 

  22. Jiang, H. et al. T-cell vaccination induces T-cell receptor Vβ-specific Qa-1-restricted regulatory CD8+ T cells. Proc. Natl. Acad. Sci. USA 95, 4533–4537 (1998).

    Article  CAS  Google Scholar 

  23. Vandenbark, A.A., Hashim, G. & Offner, H. Immunization with a synthetic T-cell receptor V-region peptide protects against experimental autoimmune encephalomyelitis. Nature 341, 541–544 (1989).

    Article  CAS  Google Scholar 

  24. Sun, D., Whitaker, J.N. & Wilson, D.B. Regulatory T cells in experimental allergic encephalomyelitis. I. Frequency and specificity analysis in normal and immune rats of a T-cell subset that inhibits disease. Int. Immunol. 11, 307–315 (1999).

    Article  CAS  Google Scholar 

  25. Willenborg, D.O., Fordham, S.A., Staykova, M.A., Ramshaw, I.A. & Cowden, W.B. IFN-γ is critical to the control of murine autoimmune encephalomyelitis and regulates both in the periphery and in the target tissue: a possible role for nitric oxide. J. Immunol. 163, 5278–5286 (1999).

    CAS  PubMed  Google Scholar 

  26. Fink, P.J., Shimonkevtz, R.P. & Bevan, M.J. Veto cells. Ann. Rev. Immunol. 6, 115–137 (1988).

    Article  CAS  Google Scholar 

  27. Reich-Zeliger, S., Zhao, Y., Krauthgamer, R., Bachar-Lustig, E. & Reisner, Y. Anti-third party CD8+ CTLs as potent veto cells: coexpression of CD8 and FasL is a prerequisite. Immunity 13, 507–515 (2000).

    Article  CAS  Google Scholar 

  28. Das, M.P., Nicholson, L.B., Greer, J.M. & Kuchroo, V.K. Autopathogenic T-helper cell type 1 (Th1) and protective Th2 clones differ in their recognition of the autoantigenic peptide of myelin proteolipid protein. J. Exp. Med. 186, 867–876 (1997).

    Article  CAS  Google Scholar 

  29. Falcone, M. & Bloom, B.R. A T-helper cell 2 (Th2) immune response against non-self antigens modifies the cytokine profile of autoimmune T cells and protects against experimental allergic encephalomyelitis. J. Exp. Med. 185, 901–907 (1997).

    Article  CAS  Google Scholar 

  30. Jiang, H., Braunstein, N.S., Yu, B., Winchester, R. & Chess, L. CD8+ T cells control the TH phenotype of MBP-reactive CD4+ T cells in EAE mice. Proc. Natl. Acad. Sci. USA 98, 6301–6306 (2001).

    Article  CAS  Google Scholar 

  31. Coligan, J., Kruisbeek, A., Margulies, D., Shevach, E. & Strober, W. Current Protocols in Immunology (John Wiley and Sons, New York, 1994).

    Google Scholar 

  32. Sheehy, M.E., McDermott, A.B., Furlan, S.N., Klenerman, P. & Nixon, D.F. A novel technique for the fluorometric assessment of T-lymphocyte antigen-specific lysis. J. Immunol. Methods 249, 99–110 (2001).

    Article  CAS  Google Scholar 

  33. Gaur, A. et al. Amelioration of relapsing experimental autoimmune encephalomyelitis with altered myelin basic protein peptides involves different cellular mechanisms. J. Neuroimmunol. 74, 149–158 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Richard Cross, Dick Ashmun, and Mahnaz Paktinat for assistance with flow cytometry and cell sorting, Phuong Nguyen for assistance with mouse phenotyping, and D. Kioussis for providing the phCD2-VA expression vector. This work is supported by NIH grants AI01480 and AI49872 (T.L.G.), the American Lebanese Syrian Associated Charities (T.L.G., M.D.J.), and the Howard Hughes Medical Institute (R.A.F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence L. Geiger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jyothi, M., Flavell, R. & Geiger, T. Targeting autoantigen-specific T cells and suppression of autoimmune encephalomyelitis with receptor-modified T lymphocytes. Nat Biotechnol 20, 1215–1220 (2002). https://doi.org/10.1038/nbt758

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt758

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing