Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Lipid rafts: at a crossroad between cell biology and physics

Abstract

Membrane lateral heterogeneity is accepted as a requirement for the function of biological membranes and the notion of lipid rafts gives specificity to this broad concept. However, the lipid raft field is now at a technical impasse because the physical tools to study biological membranes as a liquid that is ordered in space and time are still being developed. This has lead to a disconnection between the concept of lipid rafts as derived from biochemical and biophysical assays and their existence in the cell. Here, we compare the concept of lipid rafts as it has emerged from the study of synthetic membranes with the reality of lateral heterogeneity in biological membranes. Further application of existing tools and the development of new tools are needed to understand the dynamic heterogeneity of biological membranes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Domain-length scales and the biomembrane as a protein–lipid composite material.
Figure 2: Examples of lipid and protein domains in cell membranes.

Similar content being viewed by others

References

  1. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Simons, K. & van Meer, G. Lipid sorting in epithelial cells. Biochemistry 27, 6197–6202 (1988).

    CAS  PubMed  Google Scholar 

  3. Brown, D. GPI-anchored proteins and detergent-resistant membrane domains. Braz. J. Med. Biol. Res. 27, 309–315 (1994).

    CAS  PubMed  Google Scholar 

  4. Pralle, A., Florin, E. -L., Simons, K. & Horber, J. K. H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Dietrich, C. et al. Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dietrich, C., Volovyk, Z. N., Levi, M., Thompson, N. L. & Jacobson, K. Partitioning of Thy-1, GM1, and cross-linked phospholipids into lipid rafts reconstituted in supported model membrane monolayers. Proc. Natl Acad. Sci. USA 98, 10642–10647 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mayor, S. & Rao, M. Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5, 231–240 (2004).

    CAS  PubMed  Google Scholar 

  8. Anderson, R. G. & Jacobson, K. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296, 1821–1825 (2002).

    CAS  PubMed  Google Scholar 

  9. Maxfield, F. R. Plasma membrane microdomains. Curr. Opin. Cell Biol. 14, 483–487 (2002).

    CAS  PubMed  Google Scholar 

  10. Mouritsen, O. G. Life as a matter of fat. The emerging science of lipidomics. (Springer-Verlag, Heidelberg, 2005).

    Google Scholar 

  11. Pike, L. J. Rafts defined: a report on the Keystone symposium on lipid rafts and cell function. J. Lipid Res. 47, 1597–1598 (2006).

    CAS  PubMed  Google Scholar 

  12. Edidin, M. The state of lipid rafts: From model membranes to cells. Annual Rev. Biophys. Biomol. Struct. 32, 257–283 (2003).

    CAS  Google Scholar 

  13. Kusumi, A. et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecules tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005).

    CAS  PubMed  Google Scholar 

  14. Lommerse, P. H. M., Spaink, H. P. & Schmidt, T. In vivo plasma membrane organization: results of biophysica approaches. Biochim. Biophys. Acta 2004, 119–131 (2004).

    Google Scholar 

  15. McMullen, T., Lewis, R. & McElhaney, R. Cholesterol-phospholipid interactions, the liquid -ordered phase and lipid rafts in model and biological membranes. Curr. Opin. Coll. Inter. Sci. 8, 459–468 (2004).

    CAS  Google Scholar 

  16. Mukherjee, S. & Maxfield, F. R. Membrane domains. Annu. Rev. Cell Dev. Biol. 20, 839–866 (2004).

    CAS  PubMed  Google Scholar 

  17. Munro, S. Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003).

    CAS  PubMed  Google Scholar 

  18. Parton, R. G. & Hancock, J. F. Lipid rafts and plasma membrane microorganization: insights from Ras. Trends Cell Biol. 14, 141–147 (2004).

    CAS  PubMed  Google Scholar 

  19. Simons, K. & Vaz, W. Model systems, lipid rafts, and cell membranes. Ann. Rev. Biophys. Biomol. Struct. 33, 269–295 (2004).

    CAS  Google Scholar 

  20. Vereb, G. et al. Dynamic, yet structured: The cell membrane the decades after the Singer-Nicolson model. Proc. Natl Acad. Sci. USA 100, 8053–8058 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. de Almeida, R. F., Loura, L., Fedorov, A. & Prieto, M. Lipid rafts have different sizes depending on membrane composition: A time-resolved fluorescence resonance energy transfer study. J. Mol. Biol. 346, 1109–1120 (2005).

    CAS  PubMed  Google Scholar 

  22. Hsueh, Y. W., Gilbert, K., Trandum, C., Zuckermann, M. & Thewalt, J. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. Biophys. J. 88, 1799–1808 (2005).

    CAS  PubMed  Google Scholar 

  23. Veatch, S. L., Polozov, I. V., Gawrisch, K. & Keller, S. L. Liquid domains in vesicles investigated by NMR and fluorescence microscopy. Biophys. J. 86, 2910–2922 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Singer, S. J. & Nicolson, G. L. The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).

    CAS  PubMed  Google Scholar 

  25. Engleman, D. M. Membranes are more mosaic than fluid. Nature 438, 578–580 (2005).

    Google Scholar 

  26. Ryan, T. A., Myers, J., Holowka, D. A., Baird, B. A. & Webb, W. W. Molecular crowding on the cell surface. Science 239, 61–64 (1988).

    CAS  PubMed  Google Scholar 

  27. Quinn, P., Griffiths, G. & Warren, G. Density of newly synthesized plasma membrane proteins in intracellular membranes II. Biochemical studies. J. Cell Biol. 98, 2142–2147 (1984).

    CAS  PubMed  Google Scholar 

  28. Liang, Y. et al. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes. J. Biol. Chem. 278, 21655–21662 (2003).

    CAS  PubMed  Google Scholar 

  29. Liebman, P. A. & Entine, G. Lateral diffusion of visual pigment in photoreceptor disk membranes. Science 185, 457–459 (1974).

    CAS  PubMed  Google Scholar 

  30. Rothberg, K. G., Ying, Y. S., Kamen, B. A. & Anderson, R. G. Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J. Cell Biol. 111, 2931–2938 (1990).

    CAS  PubMed  Google Scholar 

  31. McLaughlin, S. & Murray, D. Plasma membrane phosphoinositide organization by protein electrostatics. Nature 438, 605–611 (2005).

    CAS  PubMed  Google Scholar 

  32. Sheetz, M. P. Cell control by membrane-cytoskeleton adhesion. Nature Rev. Mol. Cell Biol. 2, 392–396 (2001).

    CAS  Google Scholar 

  33. Janmey, P. A. & Lindberg, U. Cytoskeletal regulation: rich in lipids. Nature Rev. Mol. Cell Biol. 5, 658–666 (2004).

    CAS  Google Scholar 

  34. Maksymiw, R., Sui, S. -F., Gaub, H. & Sackmann, E. Electrostatic coupling of spectrin dimers to phosphatidylserine containing lipid lamellae. Biochemistry 26, 2983–2990 (1987).

    CAS  PubMed  Google Scholar 

  35. Grzybek, M. et al. Spectrin-phospholipid interactions. Existence of multiple kinds of binding sites? Chem. Phys. Lipids 141, 133–141 (2006).

    CAS  PubMed  Google Scholar 

  36. Kwik, J. et al. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate-dependent organization of cell actin. Proc. Natl Acad. Sci. USA 100, 13964–13969 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. McConnell, H. & Radhakrishnan, A. Condensed complexes of cholesterol and phospholipids. Biochim. Biophys. Acta 1610, 159–173 (2003).

    CAS  PubMed  Google Scholar 

  38. McLaughlin, S. How clusters of basic/hydrophobic residues on proteins interact with lipids in membranes. Biophys. J. SP23 (2004).

  39. Lee, A. G. Lipid-protein interactions in biological membranes: a structural perspective. Biochim. Biophys. Acta 1612, 1–40 (2003).

    CAS  PubMed  Google Scholar 

  40. Marsh, D. & Pali, T. Lipid conformation in crystalline bilayers and in crystals of transmembrane proteins. Chem. Phys. Lipids 141, 48–65 (2006).

    CAS  PubMed  Google Scholar 

  41. Sharma, P. et al. Nanoscale organization of multiple GPI-anchored proteins in living cell membranes. Cell 116, 577–589 (2004).

    CAS  PubMed  Google Scholar 

  42. Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol anchored protein at the apical surface of MDCK cells examined at a resolution of <100A using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Meyer, B. H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl. Acad. Sci USA 103, 2138–2143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hess, S. T. et al. Quantitative electron microscopy and fluorescence spectroscopy of the membrane distribution of influenza hemagglutinin. J. Cell Biol. 169, 965–976 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Douglas, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Google Scholar 

  46. Larson, D. R., Gosse, J. A., Holowka, D. A., Baird, B. A. & Webb, W. W. Temporally resolved interactions between antigen-stimulated IgE receptors and Lyn kinase on living cells. J. Cell Biol. 171, 527–536 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Parton, R. G. Caveolae--from ultrastructure to molecular mechanisms. Nature Rev. Mol. Cell Biol. 4, 162–167 (2003).

    CAS  Google Scholar 

  48. Schade, A. E. & Levine, A. D. Lipid raft heterogeneity in human peripheral blood T lymphoblasts: A mechanism for regulating the initiation of TCR signal transduction. J. Immunol. 168, 2233–2239 (2002).

    CAS  PubMed  Google Scholar 

  49. Wilson, B. et al. Markers for detergent-resistant lipid rafts occupy distinct and dynamic domains in native membranes. Mol. Biol. Cell 15, 2580–2592 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M. Observing FceRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149, 1131–1142 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Bruegger, B. et al. The membrane domains occupied by glcyosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition. J. Biol. Chem. 279, 7530–7536 (2004).

    CAS  Google Scholar 

  52. Lichtenberg, D., Goni, F. M. & Heerklotz, H. Detergent-resistant membranes should not be identified with membrane rafts. Trends Biochem. Sci. 30, 430–436 (2005).

    CAS  PubMed  Google Scholar 

  53. Kenworthy, A. K. et al. Dynamics of putative raft-associated proteins at the cell surface. J. Cell Biol. 165, 735–746 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Vrljic, M., Nishimura, S. Y., Brasselet, S., Moerner, W. E. & McConnell, H. M. Translational diffusion of individual class II MHC membrane proteins in cells. Biophys. J. 83, 2681–2692 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Niv, H., Gutman, O., Kloog, Y. & Henis, Y. I. Activated K-Ras and H-Ras display different interactions with saturable nonraft sites at the surface of live cells. J. Cell Biol. 157, 865–872 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Plowman, S. J., Muncke, C., Parton, R. G. & Hancock, J. F. H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton. Proc. Natl Acad. Sci. USA 102, 15500–15505 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Murakoshi, H. et al. Single-molecule imaging analysis of Ras activation in living cells. Proc. Natl Acad. Sci. USA 101, 7317–7322 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Malinska, K., Malinsky, J., Opekarova, M. & Tanner, W. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14, 4427–4436 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Schutz, G. J., Kada, G., Pastushenko, V. P. & Schindler, H. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19, 892–901 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Gaus, K. et al. Visualizing lipid structure and raft domains in living cells with two-photon microscopy. Proc. Natl Acad. Sci. USA 100, 15554–15559 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Hemler, M. E. Tetraspanin functions and associated microdomains. Nature Rev. Mol. Cell Biol. 6, 801–811 (2005).

    CAS  Google Scholar 

  62. Roper, K., Corbeil, D. & Huttner, W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nature Cell Biol. 2, 582–592 (2000).

    CAS  PubMed  Google Scholar 

  63. Nydegger, S., Khurana, S., Krementsov, D. N., Foti, M. & Thali, M. Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1. J. Cell Biol. 173, 795–807 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Rothberg, K. G. et al. Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992).

    CAS  PubMed  Google Scholar 

  65. Swamy, M. J. et al. Coexisting domains in the plasma membranes of live cells characterized by spin-label ESR spectroscopy. Biophys J. 90, 4452–4465 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Meder, D., Moreno, M. J., Verkade, P., Vaz, W. L. & Simons, K. Phase coexistence and connectivity in the apical membrane of polarized epithelial cells. Proc. Natl Acad. Sci. USA 103, 329–334 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lagerholm, B. C., Weinreb, G. E., Jacobson, K. & Thompson, N. L. Detecting microdomains in intact cell membranes. Annu. Rev. Phys. Chem. 56, 309–336 (2005).

    CAS  PubMed  Google Scholar 

  68. Marguet, D., Lenne, P. F., Rigneault, H. & He, H. T. Dynamics in the plasma membrane: how to combine fluidity and order. EMBO J. 25, 3446–3457 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Moertelmaier, M., Brameshuber, M., Linimeier, M., Schuetz, G. & Stockinger, H. Thinning out clusters while conserving stoichiometry of labeling. Appl. Phys. Lett. 87, 263903 (2005).

    Google Scholar 

  70. Egner, A. & Hell, S. W. Fluorescence microscopy with super-resolved optical sections. Trends Cell Biol. 15, 207–215 (2005).

    CAS  PubMed  Google Scholar 

  71. Marxer, C. G., Kraft, M. L., Weber, P. K., Hutcheon, I. D. & Boxer, S. G. Supported membrane composition analysis by secondary ion mass spectrometry with high lateral resolution. Biophys J. 88, 2965–2975 (2005).

    CAS  Google Scholar 

  72. Winograd, N. The magic of cluster SIMS. Anal. Chem. 77, 142A–149A (2005).

    CAS  Google Scholar 

  73. Koopman, M. et al. Near-field scanning optical microscopy in liquid for high resolution single molecule detection on dendritic cells. FEBS Lett. 573, 6–10 (2004).

    CAS  PubMed  Google Scholar 

  74. Krishnan, R. V., Varma, R. & Mayor, S. Fluorescence methods to probe nanometre-scale organizaton of molecules in living cell membranes. J. Fluor. 11, 211–226 (2001).

    CAS  Google Scholar 

  75. Lesniewska, E., Milhiet, P. E., Gicondi, M. C. & Le Grimellec, C. Atomic force microscope imaging of cells and membranes. Methods Cell Biol. 68, 51–65 (2002).

    PubMed  Google Scholar 

  76. Nagle, J. Could diffuse scattering of x-rays and/or neutrons provide structural information about rafts? Biophys. J. SP28 (2004).

  77. Pencer, J. et al. Detection of sub-micron raft-like domains in membranes by small-angle neutron scattering. Eur. Phys. J. 18, 447–458 (2005).

    CAS  Google Scholar 

  78. Morowitz, H. Energy Flow in Biology (Ox Bow Press, Woodbridge, CT; 1968).

    Google Scholar 

  79. Pfeffer, S. Membrane domains in the secretory and endocytic pathways. Cell 112, 507–517 (2003).

    CAS  PubMed  Google Scholar 

  80. Gheber, L. A. & Edidin, M. A model for membrane patchiness: lateral diffusion in the presence of barriers and vesicle traffic. Biophys. J. 77, 3163–3175 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sabra, M. C. & Mouritsen, O. G. Steady-state compartmentalization of lipid membranes by active proteins. Biophys. J. 74, 745–752 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Nicolis, G. & Prigogine, I. Exploring Complexity (W. H. Freeman, New York, 1989).

    Google Scholar 

  83. Anderson, R. G. The caveolae membrane system. Annu. Rev. Biochem. 67, 199–225 (1998).

    CAS  PubMed  Google Scholar 

  84. Smart, E. J., Ying, Y., Donzell, W. C. & Anderson, R. G. A role for caveolin in transport of cholesterol from endoplasmic reticulum to plasma membrane. J. Biol. Chem. 271, 29427–29435 (1996).

    CAS  PubMed  Google Scholar 

  85. Pol, A. et al. Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant. Mol. Biol. Cell 15, 99–110 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Roy, S. et al. Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains. Nature Cell Biol. 1, 98–105 (1999).

    CAS  PubMed  Google Scholar 

  87. Chang, W. J., Rothberg, K. G., Kamen, B. A. & Anderson, R. G. Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J. Cell Biol. 118, 63–69 (1992).

    CAS  PubMed  Google Scholar 

  88. Silvius, J. R. Partitioning of membrane molecules between raft and non-raft domains: Insights from model-membrane studies. Biochim. Biophys. Acta 1746, 193–202 (2005).

    CAS  PubMed  Google Scholar 

  89. Simons, K. & Toomre, D. Lipid rafts and signal transduction. Nature Rev. Mol. Cell Biol. 1, 31–39 (2000).

    CAS  Google Scholar 

  90. Chen, Y., Thelin, W., Yang, B., Milgram, S. & Jacobson, K. Transient anchorage of cross-linked glycosyl-phosphatidylinositol–anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides. J. Cell Biol. 175, 169–178 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Hammond, A. T. et al. Crosslinking a lipid raft component triggers liquid orderedliquid disordered phase separation in model plasma membranes. Proc. Natl Acad. Sci. USA 102, 6320–6325 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. De Angelis, A. A. et al. NMR experiments on aligned samples of membrane proteins. Methods Enzymol. 394, 350–382 (2005).

    CAS  PubMed  Google Scholar 

  93. Nicolau, D. V. Jr., Burrage, K., Parton, R. G. & Hancock, J. F. Identifying optimal lipid raft characteristics required to promote nanoscale protein-protein interactions on the plasma membrane. Mol. Cell Biol. 26, 313–323 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Heijnen, H. F. G. et al. Concentration of rafts in platelet filopodia correlates with recruitment of c-Src and CD63 to these domains. J. Thromb. Haemos. 1, 1161–1173 (2003).

    CAS  Google Scholar 

  95. Cambi, A. et al. Microdomains of the C-typle lectin DC-SIGN are portals for virus entry into dendritic cells. J. Cell Biol. 164, 145–155 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Prior, I., Muncke, C., Parton, R. & Hancock, J. Direct visualization of Ras proteins in spatially distinct cell surface microdomains. J. Cell Biol. 160, 165–170 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Szollosi, J., Horejsi, V., Bene, L., Angelisova, P. & Damjanovich, S. Supramolecular complexes of MHC class I, MHC class II, CD20, and tetraspan molecules (CD53, CD81, and CD82) at the surface of a B cell line JY. J. Immunol. 157, 2939–2946 (1996).

    CAS  PubMed  Google Scholar 

  98. Gomez-Mouton, C. et al. Dynamic redistribution of raft domains as an organzing platform for signaling during cell chemotaxis. J. Cell Biol. 164, 759–768 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hao, M., Mukherjee, S. & Maxfield, F. R. Cholesterol depletion induces large scale domain segregation in living cell membranes. Proc. Natl Acad. Sci. USA 98, 13072–13077 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Zacharias, D. A., Violin, J. D., Newton, A. C. & Tsien, R. Y. Partitioning of lipidmodified monomeric GFPs into membrane microdomains of live cells. Science 296, 913–916 (2002).

    CAS  PubMed  Google Scholar 

  101. Lommerse, P. H. et al. Single-molecule imaging of the H-ras membrane-anchor reveals domains in the cytoplasmic leaflet of the cell membrane. Biophys. J. 86, 609–616 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Herbert, B., Constantino, S. & Wiseman, P. W. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells. Biophys. J. 88, 3601–3614 (2005).

    Google Scholar 

  103. Sanchez, S. A. & Gratton, E. Lipid--protein interactions revealed by two-photon microscopy and fluorescence correlation spectroscopy. Acc. Chem. Res. 38, 469–477 (2005).

    CAS  PubMed  Google Scholar 

  104. Wawrezinieck, L., Rigneault, H., Marguet, D. & Lenne, P.-F. Fluorescence correlation spectroscopy diffusion laws to probe the submicron cell membrane organization. Biophys. J 89, 4029–4042 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Wiseman, P. W. et al. Spatial mapping of integrin interactions and dynamics during cell migration by image correlation microscopy. J. Cell Sci. 117, 5521–5534 (2004).

    CAS  PubMed  Google Scholar 

  106. Acasandreia, M. A., Dale, R. E., van de Venb, M. & Ameloot, M. . Twodimensional Förster resonance energy transfer (2-D FRET) and the membrane raft hypothesis. Chem. Phys. Lett. 419, 469–473 (2006).

    Google Scholar 

  107. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by singlequantum dot tracking. Science 302, 442–445 (2003).

    CAS  PubMed  Google Scholar 

  108. Dietrich, C., Yang, B., Fujiwara, T., Kusumi, A. & Jacobson, K. Relationship of lipid rafts to transient confinement zones detected by single particle tracking. Biophys. J. 82, 274–284 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Cherry, R. J. et al. Measurements of associations of cell-surface receptors by single-particle fluorescence imaging. Biochem. Soc. Trans. 31, 1028–1031 (2003).

    CAS  PubMed  Google Scholar 

  110. Vrljic, M., Nishimura, S. Y., Moerner, W. E. & McConnell, H. M. Cholesterol depletion suppresses the translational diffusion of class II major histocompatibility complex proteins in the plasma membrane. Biophys. J. 88, 334–347 (2005).

    CAS  PubMed  Google Scholar 

  111. Lukic, B. et al. Direct observation of nondiffusive motion of a Brownian particle. Phys. Rev. Lett. 95, 160601 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

K.J. thanks A G. Lee, G. Schutz and H. Stockinger for stimulating comments. We also thank A. Diehl and B. Yang for artwork and assistance in preparing the manuscript. This work was supported by the National Institutes of Health (NIH) grant GM 41402 (K.J.), the Kenan Distinguished Professorship (K.J.), NIH grant HL 20948 (R.A.), NIH grant GM 52016 (R.A.), the Perot Family Foundation (R.A.) and the Cecil H. Green Distinguished Chair in Cellular and Molecular Biology (R.A.). MEMPHYS-Center for Biomembrane Physics is supported by the Danish National Research Foundation (O.G.M.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobson, K., Mouritsen, O. & Anderson, R. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9, 7–14 (2007). https://doi.org/10.1038/ncb0107-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0107-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing