Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization

Abstract

The actin cytoskeleton has been implicated in restricting diffusion of plasma membrane components. Here, simultaneous observations of quantum dot-labelled FcɛRI motion and GFP-tagged actin dynamics provide direct evidence that actin filament bundles define micron-sized domains that confine mobile receptors. Dynamic reorganization of actin structures occurs over seconds, making the location and dimensions of actin-defined domains time-dependent. Multiple FcɛRI often maintain extended close proximity without detectable correlated motion, suggesting that they are co-confined within membrane domains. FcɛRI signalling is activated by crosslinking with multivalent antigen. We show that receptors become immobilized within seconds of crosslinking. Disruption of the actin cytoskeleton results in delayed immobilization kinetics and increased diffusion of crosslinked clusters. These results implicate actin in membrane partitioning that not only restricts diffusion of membrane proteins, but also dynamically influences their long-range mobility, sequestration and response to ligand binding.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: QD-IgE serves as a non-perturbing probe of FcɛRI diffusion.
Figure 2: FcɛRI are co-confined.
Figure 3: Motion of QD-IgE–FcɛRI is consistent with co-confinement not attraction.
Figure 4: Actin defines regions of FcɛRI motion in the membrane.
Figure 5: Effect of actin proximity on FcɛRI trajectories.
Figure 6: Actin facilitates crosslink-induced immobilization of FcɛRI.

Similar content being viewed by others

References

  1. Dustin, M. L. & Cooper, J. A. The immunological synapse and the actin cytoskeleton: molecular hardware for T cell signaling. Nature Immunol. 1, 23–29 (2000).

    Article  CAS  Google Scholar 

  2. Lidke, D. S., Lidke, K. A., Rieger, B., Jovin, T. M. & Arndt-Jovin, D. J. Reaching out for signals: filopodia sense EGF and respond by directed retrograde transport of activated receptors. J. Cell. Biol. 4, 619–626 (2005).

    Article  Google Scholar 

  3. Zhang, J., et al. Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron 1, 14–34 (2006).

    Article  Google Scholar 

  4. Boniface, J. J., et al. Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. Immunity 4, 459–466 (1998).

    Article  Google Scholar 

  5. Kraft, S. & Kinet, J. P. New developments in FcɛRI regulation, function and inhibition. Nature Rev. Immunol. 5, 365–378 (2007).

    Article  Google Scholar 

  6. Thyagarajan, R., Arunkumar, N. & Song, W. Polyvalent antigens stabilize B cell antigen receptor surface signaling microdomains. J. Immunol. 12, 6099–6106 (2003).

    Article  Google Scholar 

  7. Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 1, 3–21 (2005).

    Article  Google Scholar 

  8. Murase, K., et al. Ultrafine membrane compartments for molecular diffusion as revealed by single molecule techniques. Biophys. J. 6, 4075–4093 (2004).

    Article  Google Scholar 

  9. Ritchie, K., et al. Detection of non-Brownian diffusion in the cell membrane in single molecule tracking. Biophys. J. 3, 2266–2277 (2005).

    Article  Google Scholar 

  10. Saxton, M. J. & Jacobson, K. Single-particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct., 373–399 (1997).

  11. Singer, S. & Nicolson, G. The fluid mosaic model of the structure of cell membranes. Science 4023, 720–731 (1972).

    Article  Google Scholar 

  12. Jacobson, K., Sheets, E. D. & Simson, R. Revisiting the fluid mosaic model of membranes. Science 5216, 1441–1442 (1995).

    Article  Google Scholar 

  13. Kusumi, A., et al. Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct., 351–378 (2005).

  14. Morone, N., et al. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J. Cell. Biol. 6, 851–862 (2006).

    Article  Google Scholar 

  15. Douglass, A. D. & Vale, R. D. Single-molecule microscopy reveals plasma membrane microdomains created by protein–protein networks that exclude or trap signaling molecules in T cells. Cell 6, 937–950. (2005).

    Article  Google Scholar 

  16. Draber, P. & Draberova, L. Lipid rafts in mast cell signaling. Mol. Immunol. 16–18, 1247–1252 (2002).

  17. Frankel, D. J., et al. Revealing the topography of cellular membrane domains by combined atomic force microscopy/fluorescence imaging. Biophys. J. 7, 2404–2413 (2006).

    Article  Google Scholar 

  18. Lillemeier, B. F., Pfeiffer, J. R., Surviladze, Z., Wilson, B. S. & Davis, M. M. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl Acad. Sci. USA. 50, 18992–18997 (2006).

    Article  Google Scholar 

  19. Garman, S. C., Wurzburg, B. A., Tarchevskaya, S. S., Kinet, J. P. & Jardetzky, T. S. Structure of the Fc fragment of human IgE bound to its high-affinity receptor FcɛRI α. Nature 6793, 259–266. (2000).

    Article  Google Scholar 

  20. Metzger, H. The interaction of IgE with rat basophilic leukemia cells. II. Quantitative aspects of the binding reaction. J. Exp. Med. 6, 1676–1695 (1974).

    Google Scholar 

  21. Hartwig, J. H. & DeSisto, M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J. Cell. Biol. 3, 407–425 (1991).

    Article  Google Scholar 

  22. Ortega, E., Schweitzer-Stenner, R. & Pecht, I. Possible orientational constraints determine secretory signals induced by aggregation of IgE receptors on mast cells. EMBO J. 13, 4101–4109 (1988).

    Article  Google Scholar 

  23. Giepmans, B. N., Deerinck, T. J., Smarr, B. L., Jones, Y. Z. & Ellisman, M. H. Correlated light and electron microscopic imaging of multiple endogenous proteins using Quantum dots. Nature Methods 10, 743–749. (2005).

    Article  Google Scholar 

  24. Wilson, B. S., Pfeiffer, J. R. & Oliver, J. M. Observing FcɛRI signaling from the inside of the mast cell membrane. J. Cell. Biol. 5, 1131–1142 (2000).

    Article  Google Scholar 

  25. Barisas, B. G., et al. Compartmentalization of the Type I Fcɛ receptor and MAFA on mast cell membranes. Biophys. Chem. 1–3, 209–217 (2007).

  26. Feder, T. J., Brust-Mascher, I., Slattery, J. P., Baird, B. & Webb, W. W. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation. Biophys. J. 6, 2767–2773 (1996).

    Article  Google Scholar 

  27. Suzuki, K., Ritchie, K., Kajikawa, E., Fujiwara, T. & Kusumi, A. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques. Biophys. J. 5, 3659–3680 (2005).

    Article  Google Scholar 

  28. Pyenta, P., Schwille, P., Webb, W. W., Holowka, D. & Baird, B. Lateral diffusion of membrane lipid-anchored probes before and after aggregation of cell surface IgE-receptors. J. Phys. Chem. A, 107, 8310–8318 (2003).

    Article  CAS  Google Scholar 

  29. Schlessinger, J., Webb, W. W., Elson, E. L. & Metzger, H. Lateral motion and valence of Fc receptors on rat peritoneal mast cells. Nature 5586, 550–552 (1976).

    Article  Google Scholar 

  30. Thomas, J. L., Feder, T. J. & Webb, W. W. Effects of protein concentration on IgE receptor mobility in rat basophilic leukemia cell plasma membranes. Biophys. J. 5, 1402–1412 (1992).

    Article  Google Scholar 

  31. Daumas, F., et al. Confined diffusion without fences of a g-protein-coupled receptor as revealed by single particle tracking. Biophys. J. 1, 356–366 (2003).

    Article  Google Scholar 

  32. Jacquier, V., Prummer, M., Segura, J. M., Pick, H. & Vogel, H. Visualizing odorant receptor trafficking in living cells down to the single-molecule level. Proc. Natl Acad. Sci. USA, (2006).

  33. Kusumi, A., Sako, Y. & Yamamoto, M. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 5, 2021–2040 (1993).

    Article  Google Scholar 

  34. Pfeiffer, J. R. & Oliver, J. M. Tyrosine kinase-dependent assembly of actin plaques linking Fc-ɛ-R1 crosslinking to increased cell substrate adhesion in Rbl-2h3 tumor mast-cells. J. Immunol. 1, 270–279 (1994).

    Google Scholar 

  35. Destainville, N. & Salome, L. Quantification and correction of systematic errors due to detector time-averaging in single-molecule tracking experiments. Biophys. J. 2, L17–L19 (2006).

    Article  Google Scholar 

  36. Frigeri, L. & Apgar, J. R. The role of actin microfilaments in the downregulation of the degranulation response in RBL-2H3 mast cells. J. Immunol. 4, 2243–2250. (1999).

    Google Scholar 

  37. Menon, A. K., Holowka, D., Webb, W. W. & Baird, B. Cross-linking of receptor-bound IgE to aggregates larger than dimers leads to rapid immobilization. J. Cell. Biol. 2, 541–550 (1986).

    Article  Google Scholar 

  38. Dahl, S. C., Geib, R. W., Fox, M. T., Edidin, M. & Branton, D. Rapid capping in α-spectrin-deficient MEL cells from mice afflicted with hereditary hemolytic anemia. J. Cell. Biol. 5, 1057–1065 (1994).

    Article  Google Scholar 

  39. Tang, Q. & Edidin, M. Lowering the barriers to random walks on the cell surface. Biophys. J. 1, 400–407 (2003).

    Article  Google Scholar 

  40. Pike, L. J. Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 7, 1597–1598 (2006).

    Article  Google Scholar 

  41. Viola, A. & Gupta, N. Tether and trap: regulation of membrane-raft dynamics by actin-binding proteins. Nature Rev. Immunol. 11, 889–896 (2007).

    Article  Google Scholar 

  42. Mao, S. Y., Varin-Blank, N., Edidin, M. & Metzger, H. Immobilization and internalization of mutated IgE receptors in transfected cells. J. Immunol. 3, 958–966 (1991).

    Google Scholar 

  43. Dahan, M., et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 5644, 442–445 (2003).

    Article  Google Scholar 

  44. Liu, F. T., et al. Monoclonal dinitrophenyl-specific murine IgE antibody: preparation, isolation, and characterization. J. Immunol. 6, 2728–2737 (1980).

    Google Scholar 

  45. Arndt-Jovin, D. J., et al. In vivo cell imaging with semiconductor quantum dots and noble-metal nanodots. Proc. SPIE, 6096, 1–10 (2006).

    Google Scholar 

  46. Martin, D. S., Forstner, M. B. & Kas, J. A. Apparent subdiffusion inherent to single particle tracking. Biophys. J. 4, 2109–2117 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants R01 GM49814, R01 AI051575 and P20 GM 67594, the Oxnard Foundation, ACS IRG 192 and by the Sandia LDRD and SURP programs. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. N.A. was supported by NSF IGERT DGE-0549500 and the UNM-SOM MD/PhD Program. We thank Sheli Ryan for assistance with cell culture, Jun Zhang for EM image analysis, and Jonas Anderson and Bernd Rieger for assistance with image processing. The UNM Cancer Center Fluorescence Microscopy Facility received support from NIH grants S10 RR14668, S10 RR19287, S10 RR016918, P20 RR11830 and P30 CA118100 and from NSF grant MCB9982161. Electron micrographs were generated in the University of New Mexico Electron Microscopy Facility, which received support from NIH grants P20 GM067594, S10 RRI5734 and RR022493.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane S. Lidke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures S1, S2, S3, S4, S5, S6, S7, S8 and Supplementary Methods (PDF 2693 kb)

Supplementary Information

Supplementary Movie 1 (MOV 1177 kb)

Supplementary Information

Supplementary Movie 2 (MOV 308 kb)

Supplementary Information

Supplementary Movie 3 (MOV 433 kb)

Supplementary Information

Supplementary Movie 4 (MOV 1040 kb)

Supplementary Information

Supplementary Movie 5 (MOV 727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, N., Lidke, K., Pfeiffer, J. et al. Actin restricts FcɛRI diffusion and facilitates antigen-induced receptor immobilization. Nat Cell Biol 10, 955–963 (2008). https://doi.org/10.1038/ncb1755

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1755

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing