Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells

Abstract

Accumulating evidence has shown that dysfunctional mitochondria can be selectively removed by mitophagy. Dysregulation of mitophagy is implicated in the development of neurodegenerative disease and metabolic disorders. How individual mitochondria are recognized for removal and how this process is regulated remain poorly understood. Here we report that FUNDC1, an integral mitochondrial outer-membrane protein, is a receptor for hypoxia-induced mitophagy. FUNDC1 interacted with LC3 through its typical LC3-binding motif Y(18)xxL(21), and mutation of the LC3-interaction region impaired its interaction with LC3 and the subsequent induction of mitophagy. Knockdown of endogenous FUNDC1 significantly prevented hypoxia-induced mitophagy, which could be reversed by the expression of wild-type FUNDC1, but not LC3-interaction-deficient FUNDC1 mutants. Mechanistic studies further revealed that hypoxia induced dephosphorylation of FUNDC1 and enhanced its interaction with LC3 for selective mitophagy. Our findings thus offer insights into mitochondrial quality control in mammalian cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mitochondrial outer-membrane protein FUNDC1 induces mitochondrial autophagy.
Figure 2: FUNDC1 as an LIR-motif-containing protein is a receptor for selective mitophagy.
Figure 3: Deletion of LIR fails to induce mitophagy, which depends on ATG5, not on Beclin 1.
Figure 4: FUNDC1 mediates mitophagy induced by hypoxia.
Figure 5: Dephosphorylation of FUNDC1 activates mitophagy induced by hypoxia.

Similar content being viewed by others

References

  1. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005).

    Article  CAS  Google Scholar 

  2. Lin, M. T. & Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443, 787–795 (2006).

    Article  CAS  Google Scholar 

  3. Goldman, S. J., Taylor, R., Zhang, Y. & Jin, S. Autophagy and the degradation of mitochondria. Mitochondrion 10, 309–315 (2010).

    Article  CAS  Google Scholar 

  4. Narendra, D., Tanaka, A., Suen, D. F. & Youle, R. J. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 183, 795–803 (2008).

    Article  CAS  Google Scholar 

  5. Mizushima, N., Levine, B., Cuervo, A. M. & Klionsky, D. J. Autophagy fights disease through cellular self-digestion. Nature 451, 1069–1075 (2008).

    Article  CAS  Google Scholar 

  6. Levine, B. & Kroemer, G. Autophagy in the pathogenesis of disease. Cell 132, 27–42 (2008).

    Article  CAS  Google Scholar 

  7. Mizushima, N., Ohsumi, Y. & Yoshimori, T. Autophagosome formation in mammalian cells. Cell Struct. Funct. 27, 421–429 (2002).

    Article  Google Scholar 

  8. Lemasters, J. J. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8, 3–5 (2005).

    Article  CAS  Google Scholar 

  9. Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011).

    Article  CAS  Google Scholar 

  10. Twig, G. et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 27, 433–446 (2008).

    Article  CAS  Google Scholar 

  11. Narendra, D. P. et al. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8, e1000298 (2010).

    Article  Google Scholar 

  12. Vives-Bauza, C. et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc. Natl Acad. Sci. USA 107, 378–383 (2010).

    Article  CAS  Google Scholar 

  13. Geisler, S. et al. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12, 119–131 (2010).

    Article  CAS  Google Scholar 

  14. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  Google Scholar 

  15. Sandoval, H. et al. Essential role for Nix in autophagic maturation of erythroid cells. Nature 454, 232–235 (2008).

    Article  CAS  Google Scholar 

  16. Schweers, R. L. et al. NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc. Natl Acad. Sci. USA 104, 19500–19505 (2007).

    Article  CAS  Google Scholar 

  17. Ichimura, Y. et al. A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492 (2000).

    Article  CAS  Google Scholar 

  18. Kabeya, Y. et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 19, 5720–5728 (2000).

    Article  CAS  Google Scholar 

  19. Kanki, T., Wang, K., Cao, Y., Baba, M. & Klionsky, D. J. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17, 98–109 (2009).

    Article  CAS  Google Scholar 

  20. Okamoto, K., Kondo-Okamoto, N. & Ohsumi, Y. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17, 87–97 (2009).

    Article  CAS  Google Scholar 

  21. Rubinsztein, D. C. et al. In search of an ‘autophagomometer’. Autophagy 5, 585–589 (2009).

    Article  CAS  Google Scholar 

  22. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–24145 (2007).

    Article  CAS  Google Scholar 

  23. Noda, N. N., Ohsumi, Y. & Inagaki, F. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584, 1379–1385 (2010).

    Article  CAS  Google Scholar 

  24. Gao, P. et al. The Bcl-2 homology domain 3 mimetic gossypol induces both Beclin 1-dependent and Beclin 1-independent cytoprotective autophagy in cancer cells. J. Biol. Chem. 285, 25570–25581 (2010).

    Article  CAS  Google Scholar 

  25. Zhao, L. et al. Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus. Autophagy 6, 386–394 (2010).

    Article  CAS  Google Scholar 

  26. Zhu, Y. et al. Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein Cell 1, 468–477 (2010).

    Article  CAS  Google Scholar 

  27. Bellot, G. et al. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell Biol. 29, 2570–2581 (2009).

    Article  CAS  Google Scholar 

  28. Zhang, H. et al. Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892–10903 (2008).

    Article  CAS  Google Scholar 

  29. Xue, Y. et al. GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. Mol. Cell. Proteomics 7, 1598–1608 (2008).

    Article  CAS  Google Scholar 

  30. Huang, H. D., Lee, T. Y., Tzeng, S. W. & Horng, J. T. KinasePhos: a web tool for identifying protein kinase-specific phosphorylation sites. Nucleic Acids Res. 33, W226–W229 (2005).

    Article  CAS  Google Scholar 

  31. Arachiche, A. et al. Localization of PTP-1B, SHP-2, and Src exclusively in rat brain mitochondria and functional consequences. J. Biol. Chem. 283, 24406–24411 (2008).

    Article  CAS  Google Scholar 

  32. Miyazaki, T., Neff, L., Tanaka, S., Horne, W. C. & Baron, R. Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J. Cell Biol. 160, 709–718 (2003).

    Article  CAS  Google Scholar 

  33. Thomas, S. M. & Brugge, J. S. Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13, 513–609 (1997).

    Article  CAS  Google Scholar 

  34. Yang, Z. & Klionsky, D. J. An overview of the molecular mechanism of autophagy. Curr. Top. Microbiol. Immunol. 335, 1–32 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Aoki, Y. et al. Phosphorylation of Serine 114 on Atg32 mediates mitophagy. Mol. Biol. Cell. 22, 3206–3217 (2011).

    Article  CAS  Google Scholar 

  36. Novak, I. & Dikic, I. Autophagy receptors in developmental clearance of mitochondria. Autophagy 7, 301–303 (2011).

    Article  CAS  Google Scholar 

  37. Novak, I. et al. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11, 45–51 (2010).

    Article  CAS  Google Scholar 

  38. Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  Google Scholar 

  39. Chen, Y. et al. Dual autonomous mitochondrial cell death pathways are activated by Nix/BNip3L and induce cardiomyopathy. Proc. Natl Acad. Sci. USA 107, 9035–9042 (2010).

    Article  CAS  Google Scholar 

  40. Rikka, S. et al. Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ. 18, 721–731 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank H. Zhang from the National Institute of Biological Sciences, China, and L. Yu from Tsinghua University, China, for their suggestions and critical reading of the manuscript. We thank Y. G. Chen from Tsinghua University for providing PGEX4T1-GABARAP and PGEX4T1-GABARAPL2 constructs. We wish to thank M. Bartlam from Nankai University and A. Zhou from Cleveland State University in Ohio for improvement of the English of the manuscript. The Chen laboratory was supported by the 973 project of the Ministry of Science and Technology (China) (2011CB910903 and 2010CB912204) and by grants from the National Natural Science Foundation of China (81130045, 90713006).

Author information

Authors and Affiliations

Authors

Contributions

L.L. observed that FUNDC1 could potentially induce mitophagy and carried out most of the biochemistry experiments. D.F. designed and carried out all electron microscopy analysis in S.S.’s laboratory. D.F. and G.C. identified that FUNDC1 is a substrate of Src kinase with some help from W.Q. D.F. and P.X. analysed the phosphorylation sites of FUNDC1 by mass spectrometry in F.Y.’s laboratory. D.F. and L.H. carried out the three-dimensional reconstruction and mitochondrial volume calculations. Q.Z. carried out fractionation analysis in P.L.’s laboratory. C.Z. and M.C. carried out cell-viability analysis. L.L., D.F. and Q.C. analysed and organized the data. Q.C. wrote the manuscript with input from L.L. and D.F. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Quan Chen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1035 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Feng, D., Chen, G. et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol 14, 177–185 (2012). https://doi.org/10.1038/ncb2422

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2422

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing