Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A novel PKC-regulated mechanism controls CD44–ezrin association and directional cell motility

An Erratum to this article was published on 01 July 2002

Abstract

The dynamic assembly and disassembly of membrane–cytoskeleton junctional complexes is critical in cell migration. Here we describe a novel phosphorylation mechanism that regulates the hyaluronan receptor CD44. In resting cells, CD44 is constitutively phosphorylated at a single serine residue, Ser325. After protein kinase C is activated, a switch in phosphorylation results in CD44 being phosphorylated solely at an alternative residue, Ser291. Using fluorescence resonance energy transfer (FRET) monitored by fluorescence lifetime imaging microscopy (FLIM) and chemotaxis assays we show that phosphorylation of Ser291 modulates the interaction between CD44 and the cytoskeletal linker protein ezrin in vivo, and that this phosphorylation is critical for CD44-dependent directional cell motility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation and characterization of mAbs specific for CD44 phosphorylated at Ser325.
Figure 2: Phorbol ester stimulation results in dephosphorylation of CD44 at Ser325.
Figure 3: Phorbol ester stimulation results in serine phosphorylation of CD44 at a non-325 site(s).
Figure 4: In vitro phosphorylation of CD44 by PKC.
Figure 5: Substituting aspartic acid for Ser291 reduces CD44–ezrin association in vitro.
Figure 6: Phorbol ester stimulation reduces CD44-ezrin association in vivo.
Figure 7: Phosphorylation of Ser291 is required for CD44-mediated directional cell motility.

Similar content being viewed by others

References

  1. Lesley, J., Hyman, R. & Kincade, P. W. CD44 and its interaction with extracellular matrix. Adv. Immunol. 54, 271–335 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Naor, D., Sionov, R. V. & Ish-Shalom, D. CD44: structure, function and association with the malignant process. Adv. Cancer Res. 71, 241–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Bajorath, J. Molecular organization, structural features and ligand binding characteristics of CD44, a highly variable cell surface glycoprotein with multiple functions. Proteins 39, 103–111 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Bretscher, A. Regulation of cortical structure by the ezrin-radixin-moesin protein family. Curr. Opin. Cell Biol. 11, 109–116 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Mangeat, P., Roy, C. & Martin, M. ERM proteins in cell adhesion and membrane dynamics. Trends Cell Biol. 9, 187–192 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Tsukita, S. & Yonemura, S. Cortical actin organization: Lessons from ERM (ezrin/radixin/moesin) proteins. J. Biol. Chem. 274, 34507–34510 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Matsui, T. et al. Rho-kinase phosphorylates COOH-terminal threonines of ezrin/radixin/moesin (ERM) proteins and regulates their head-to-tail association. J. Cell Biol. 140, 647–657 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Huang, L., Wong, T. Y. W., Lin, R. C. C. & Furthmayr, H. Replacement of threonine 558, a critical site of phosphorylation of moesin in vivo, with aspartate activates F-actin binding of moesin. Regulation by conformational change. J. Biol. Chem. 274, 12803–12810 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Pearson, M. A., Reczek, D., Bretscher, A. & Karplus, P. A. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101, 259–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Barret, C., Roy, C., Montcourrier, P., Mangeat, P. & Niggli, V. Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J. Cell Biol. 151, 1067–1080 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Mackay, D. J. G., Esch, F., Furthmayr, H. & Hall, A. Rho- and Rac- dependent assembly of focal adhesion complexes and actin filaments in permeabilized fibroblasts: an essential role for ezrin/radixin/moesin proteins. J. Cell Biol. 138, 927–938 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takahashi, K. et al. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiates the activation of the Rho small G protein. J. Biol. Chem. 272, 23371–23375 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Gautreau, A., Louvard, D. & Arpin, M. Morphogenic effects of ezrin require a phosphorylation-induced transition from oligomers to monomers at the plasma membrane. J. Cell Biol. 150, 193–203 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shaw, R. J. et al. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev. Cell 1, 63–72 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Crepaldi, T., Gautreau, A., Comoglio, P. M., Louvard, D. & Arpin, M. Ezrin is an effector of hepatocyte growth factor-mediated migration and morphogenesis in epithelial cells. J. Cell Biol. 138, 423–434 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lamb, R. F. et al. Essential functions of ezrin in maintenance of cell shape and lamellipodial extension in normal and transformed fibroblasts. Curr. Biol. 7, 682–688 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Castelo, L. & Jay, D. G. Radixin is involved in lamellipodial stability during nerve growth cone motility. Mol. Biol. Cell 10, 1511–1520 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ng, T. et al. Ezrin is a downstream effector of trafficking PKC-integrin complexes involved in the control of cell motility. EMBO J. 20, 2723–2741 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Legg, J. W. & Isacke, C. M. Identification and functional analysis of the ezrin-binding site in the hyaluronan receptor, CD44. Curr. Biol. 8, 705–708 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Yonemura, S. et al. Ezrin/radixin/moesin (ERM) proteins bind to a positively charged amino acid cluster in the juxta-membrane cytoplasmic domain of CD44, CD43 and ICAM-2. J. Cell Biol. 140, 885–895 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Morrison H. et al. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev. 15, 968–980 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peck, D. & Isacke, C. M. Hyaluronan-dependent cell migration can be blocked by a CD44 cytoplasmic domain peptide containing a phosphoserine at position 325. J. Cell Sci. 111, 1595–1601 (1998).

    CAS  PubMed  Google Scholar 

  23. Lewis, C. A., Townsend, P. A. & Isacke, C. M. Ca2+/calmodulin-dependent protein kinase mediates the phosphorylation of CD44 required for cell migration on hyaluronan. Biochem. J. 357, 843–850 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peck, D. & Isacke, C. M. CD44 phosphorylation regulates melanoma cell and fibroblast migration on, but not attachment to, a hyaluronan substratum. Curr. Biol. 6, 884–890 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Kalomiris, E. L. & Bourguignon, L. Y. Lymphoma protein kinase C is associated with the transmembrane glycoprotein GP85 and may function in GP85-ankyrin binding. J. Biol. Chem. 264, 8113–8119 (1989).

    CAS  PubMed  Google Scholar 

  26. Camp, R. L., Kraus, T. A. & Puré, E. Variations in the cytoskeletal interaction and post-translational modification of the CD44 homing receptor in macrophages. J. Cell. Biol. 115, 1283–1292 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Neame, S. J. & Isacke, C. M. Phosphorylation of CD44 in vivo requires both Ser323 and Ser325, but does not regulate membrane localisation or cytoskeletal interaction in epithelial cells. EMBO J. 11, 4733–4738 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ng, T. et al. PKCα regulates β1 integrin-dependent motility, through association and control of integrin traffic. EMBO J. 18, 3909–3923 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ng, T. et al. Imaging protein kinase Cα activation in cells. Science 283, 2085–2089 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Parsons, M. & Ng, T. Intracellular coupling of adhesion receptors: molecular proximity measurements. In Adams, J. (ed.) Methods in Cell-Matrix Adhesion. Academic Press, San Diego (in press).

  31. Herreros, J., Ng, T. & Schiavo, G. Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol. Biol. Cell 12, 2947–2960 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Squire, A. & Bastiaens, P. I. Three dimensional image restoration in fluorescence lifetime imaging microscopy. J. Microsc. 193, 36–49 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Bastiaens, P. I. & Squire, A. Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol. 9, 48–52 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Selvin, P. R. The renaissance of fluorescence resonance energy transfer. Nature Struct. Biol. 7, 730–734 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Potter, L. R. & Hunter T. Activation of protein kinase C stimulates the dephosphorylation of natriuretic peptide receptor-B at a single serine residue. J. Biol. Chem. 275, 31099–31106 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Levy, M., Jing, J., Chikvashvili, D., Thornhill, W. B. & Lotan, I. Activation of a metabotropic glutamate receptor and protein kinase C reduce the extent of inactivation of the K+ channel Kv1.1/Kvβ1.1 via dephosphorylation of Kv1.1. J. Biol. Chem. 273, 6495–6502 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Rigot, V. et al. Integrin ligation and PKC activation are required for migration of colon carcinoma cells. J. Cell Sci. 111, 3119–3127 (1998).

    CAS  PubMed  Google Scholar 

  38. Thomas, L., Etoh, T., Stamenkovic, I., Mihm, M. C. & Byers, H. R. Migration of human melanoma cells on hyaluronate is related to CD44 expression. J. Invest. Dermatol. 100, 115–120 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Göebeler, M., Kaufmann, D., Brocker, E.-B. & Klein, C. E. Migration of highly aggressive melanoma cells on hyaluronic acid is associated with functional changes, increased turnover and shedding of CD44 receptors. J. Cell Sci. 109, 1957–1964 (1996).

    PubMed  Google Scholar 

  40. Herrera-Gayol, A. & Jothy, S. CD44 modulates Hs578T human breast cancer cell adhesion, migration, and invasiveness. Exp. Mol. Pathol. 66, 99–108 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Bourguignon, L. Y, Zhu, H., Shao, L. & Chen, Y. W. CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. J. Biol. Chem. 275, 1829–1838 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ballestrem, C., Wehrle-Haller, B., Hinz, B. & Imhof, B. A. Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration. Mol. Biol. Cell 11, 2999–3012 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Imamura, H. et al. Rho and Rab small G proteins coordinately reorganize stress fibers and focal adhesions in MDCK cells. Mol. Biol. Cell 9, 2561–2575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Taunton, J. et al. Actin-dependent propulsion of endosomes and lysosomes by recruitment of N-WASP. J. Cell Biol. 148, 519–530 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parekh, D. B. et al. β1-integrin and PTEN control the phosphorylation of protein kinase C. Biochem. J. 352, 425–433(2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bastiaens, P. I. H. & Jovin, T. M. Fluorescence resonance energy transfer microscopy. In Celis, J. (ed.) Cell Biology: A Laboratory Handbook. Academic Press, New York, pp. 136–146 (1998).

    Google Scholar 

  47. Neame, S. J. & Isacke, C. M. The cytoplasmic tail of CD44 is required for basolateral localisation in epithelial MDCK cells but does not mediate association with the detergent insoluble cytoskeleton of fibroblasts. J. Cell Biol. 121, 1299–1310 (1993).

    Article  CAS  PubMed  Google Scholar 

  48. Lamb, R. F. et al. AP-1-mediated invasion requires increased expression of the hyaluronan receptor CD44. Mol. Cell. Biol. 17, 963–976 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zarkowska, T., U, S., Harlow, E. & Mittnacht, S. Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 14, 249–254 (1997).

    Article  CAS  PubMed  Google Scholar 

  50. Zicha, D., Dunn, G. & Jones, G. Analyzing chemotaxis using the Dunn direct-viewing chamber. Methods Mol. Biol. 75, 449–457 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Mittnacht for the phosphoamino acid analysis, A. Sullivan for the anti-ezrin antibody, M. Arpin for the pCB6EzTAG VSVG-ezrin construct, R. Lamb for the CD44-GFP construct, M.-T. Webster for generation of the GST-CD44(Ala291) construct and H. Yarwood and P. Townsend for many useful discussions. C.L. was funded by a Cancer Research Campaign studentship, J.L. was funded by an Arthritis Research Council studentship, T.N. is the recipient of an MRC Clinician Scientist grant. This work was supported by funding from the Arthritis Research Council, Breakthrough Breast Cancer, Cancer Research Campaign and the Medical Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare M. Isacke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legg, J., Lewis, C., Parsons, M. et al. A novel PKC-regulated mechanism controls CD44–ezrin association and directional cell motility. Nat Cell Biol 4, 399–407 (2002). https://doi.org/10.1038/ncb797

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing