Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Yeast epsin-related proteins required for Golgi–endosome traffic define a γ-adaptin ear-binding motif

An Erratum to this article was published on 01 March 2003

Abstract

Clathrin-coated vesicles (CCVs) are a central component of endocytosis and traffic between the trans-Golgi network (TGN) and endosomes. Although endocytic CCV formation is well characterized, much less is known about CCV formation at internal membranes. Here we describe two epsin amino-terminal homology (ENTH) domain-containing proteins, Ent3p and Ent5p, that are intimately involved in clathrin function at the Golgi. Both proteins associate with the clathrin adaptor Gga2p in vivo; Ent5p also interacts with the clathrin adaptor complex AP-1 and clathrin. A novel, conserved motif that mediates the interaction of Ent3p and Ent5p with γ-ear domains of Gga2p and AP-1 is defined. Ent3p and Ent5p colocalize with clathrin, and cells lacking both Ent proteins exhibit defects in clathrin localization and traffic between the Golgi and endosomes. The findings suggest that Ent3p and Ent5p constitute a functionally related pair that co-operate with Gga proteins and AP-1 to recruit clathrin and promote formation of clathrin coats at the Golgi/endosomes. On the basis of our results and the established roles of epsin and epsin-related proteins in endocytosis, we propose that ENTH-domain-containing proteins are a universal component of CCV formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ent3p and Ent5p represent a conserved family of ENTH-domain-containing proteins.
Figure 2: Ent3p and Ent5p interact with the ear domains of Gga2p and AP-1-γ.
Figure 3: In vivo interactions of Ent3p and Ent5p with clathrin and adaptors.
Figure 4: Clathrin defects in ent3Δ ent5Δ cells.

Similar content being viewed by others

References

  1. Brodsky, F. M., Chen, C. Y., Knuehl, C., Towler, M. C. & Wakeham, D. E. Biological basket weaving: formation and function of clathrin-coated vesicles. Annu. Rev. Cell Dev. Biol. 17, 517–568 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Chen, H. et al. Epsin is an EH-domain-binding protein implicated in clathrin-mediated endocytosis. Nature 394, 793–797 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. De Camilli, P. et al. The ENTH domain. FEBS Lett. 513, 11–18 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. Lindner, R. & Ungewickell, E. Clathrin-associated proteins of bovine brain coated vesicles. An analysis of their number and assembly-promoting activity. J. Biol. Chem. 267, 16567–16573 (1992).

    CAS  PubMed  Google Scholar 

  5. Ford, M. G. et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 291, 1051–1055 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Itoh, T. et al. Role of the ENTH domain in phosphatidylinositol-4,5-bisphosphate binding and endocytosis. Science 291, 1047–1051 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Ford, M. G. et al. Curvature of clathrin-coated pits driven by epsin. Nature 419, 361–366 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Kalthoff, C., Alves, J., Urbanke, C., Knorr, R. & Ungewickell, E. J. Unusual structural organization of the endocytic proteins AP180 and epsin 1. J. Biol. Chem. 277, 8209–8216 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Hirst, J. et al. A family of proteins with γ-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J. Cell Biol. 149, 67–79 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kent, H. M., McMahon, H. T., Evans, P. R., Benmerah, A. & Owen, D. J. γ-adaptin appendage domain: structure and binding site for Eps15 and γ-synergin. Structure 10, 1139–1148 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Page, L. J., Sowerby, P. J., Lui, W. W. Y. & Robinson, M. S. γ-synergin: An EH domain-containing protein that interacts with γ-adaptin. J. Cell Biol. 146, 993–1004 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kalthoff, C., Groos, S., Kohl, R., Mahrhold, S. & Ungewickell, E. J. Clint: a novel clathrin binding ENTH-domain protein at the Golgi. Mol. Biol. Cell 13, 4060–4073 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wasiak, S. et al. Enthoprotin: a novel clathrin-associated protein identified through subcellular proteomics. J. Cell Biol. 158, 855–862 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boman, A. L., Zhang, C., Zhu, X. & Kahn, R. A. A family of ADP-ribosylation factor effectors that can alter membrane transport through the trans-Golgi. Mol. Biol. Cell 11, 1241–1255 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dell'Angelica, E. C. et al. GGAs: a family of ADP ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J. Cell Biol. 149, 81–94 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brett, T. J., Traub, L. M. & Fremont, D. H. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10, 797–809 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Owen, D. J. et al. A structural explanation for the binding of multiple ligands by the γ-adaptin appendage domain. Cell 97, 805–815 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Traub, L. M., Downs, M. A., Westrich, J. L. & Fremont, D. H. Crystal structure of the α appendage of AP-2 reveals a recruitment platform for clathrin-coat assembly. Proc. Natl Acad. Sci. USA 96, 8907–8912 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nogi, T. et al. Structural basis for the accessory protein recruitment by the γ-adaptin ear domain. Nature Struct. Biol. 9, 527–531 (2002).

    CAS  PubMed  Google Scholar 

  20. Dell'Angelica, E. C. Clathrin-binding proteins: Got a motif? Join the network! Trends Cell Biol. 11, 315–318 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Pishvaee, B. et al. A yeast DNA J protein required for uncoating of clathrin-coated vesicles in vivo. Nature Cell Biol. 2, 958–963 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Cowles, C. R., Snyder, W. B., Burd, C. G. & Emr, S. D. Novel Golgi to vacuole delivery pathway in yeast: identification of a sorting determinant and required transport component. EMBO J. 16, 2769–2782 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Costaguta, G., Stefan, C. J., Bensen, E. S., Emr, S. D. & Payne, G. S. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol. Biol. Cell 12, 1885–1896 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Payne, G. S. & Schekman, R. S. Clathrin: a role in the intracellular retention of a Golgi membrane protein. Science 244, 1358–1365 (1989).

    Article  Google Scholar 

  25. Bonangelino, C. J., Chavez, E. M. & Bonifacino, J. S. Genomic screen for vacuolar protein sorting genes in Saccharomyces cereviseae. Mol. Biol. Cell 13, 2486–2501 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Raymond, C. K., O'Hara, P. J., Eichinger, G., Rothman, J. H. & Stevens, T. H. Molecular analysis of the yeast VPS3 gene and the role of its product in vacuolar protein sorting and vacuolar segregation during the cell cycle. J. Cell Biol. 111, 877–892 (1990).

    Article  CAS  PubMed  Google Scholar 

  27. Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisae. Yeast 14, 953–961 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Robinson, J. S., Klionsky, D. J., Banta, L. M. & Emr, S. D. Protein sorting in Saccharomyces cerevisiae: isolation of mutants defective in the delivery and processing of multiple vacuolar hydrolases. Mol. Cell Biol. 8, 4936–4948 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Vowels, J. J. & Payne, G. S. A role for the lumenal domain in Golgi localization of the Saccharomyces cerevisiae guanosine diphosphatase. Mol. Biol. Cell 9, 1351–1365 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to A. van der Bliek and D. Rube for help with the microscope, to S. Emr, C. Hirshberg, V. Kickhoeffer, and L. Silveira for antibodies, plasmids and strains. We thank B. Wendland and members of the Payne and van der Bliek lab for helpful discussions. This work was supported by National Institutes of Health grants GM39040 (G.S.P) and a fellowship from the Jonsson Cancer Center Foundation (M.D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory S. Payne.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duncan, M., Costaguta, G. & Payne, G. Yeast epsin-related proteins required for Golgi–endosome traffic define a γ-adaptin ear-binding motif. Nat Cell Biol 5, 77–81 (2003). https://doi.org/10.1038/ncb901

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb901

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing