Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre

Abstract

DNA double-strand break repair (DSBR) is an essential process for preserving genomic integrity in all organisms. To investigate this process at the cellular level, we engineered a system of fluorescently marked DNA double-strand breaks (DSBs) in the yeast Saccharomyces cerevisiae to visualize in vivo DSBR in single cells. Using this system, we demonstrate for the first time that Rad52 DNA repair foci and DSBs colocalize. Time-lapse microscopy reveals that the relocalization of Rad52 protein into a focal assembly is a rapid and reversible process. In addition, analysis of DNA damage checkpoint-deficient cells provides direct evidence for coordination between DNA repair and subsequent release from checkpoint arrest. Finally, analyses of cells experiencing multiple DSBs demonstrate that Rad52 foci are centres of DNA repair capable of simultaneously recruiting more than one DSB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of a Rad52 focus to a specific DSB.
Figure 2: Rapid assembly and disassembly of spontaneous Rad52 foci.
Figure 3: Repair of multiple DNA DSBs.
Figure 4: Localization of two fluorescently marked DSBs.

Similar content being viewed by others

References

  1. Smith, K.N. & Nicolas, A. Recombination at work for meiosis. Curr. Opin. Genet. Dev. 8, 200–211 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Haber, J.E. Mating-type gene switching in Saccharomyces cerevisiae. Annu. Rev. Genet. 32, 561–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Paques, F. & Haber, J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Richardson, C. & Jasin, M. Coupled homologous and nonhomologous repair of a double-strand break preserves genomic integrity in mammalian cells. Mol. Cell. Biol. 20, 9068–9075 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pierce, A.J. et al. Double-strand breaks and tumorigenesis. Trends Cell. Biol. 11, S52–S59 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Lisby, M., Rothstein, R. & Mortensen, U.H. Rad52 forms DNA repair and recombination centers during S phase. Proc. Natl Acad. Sci. USA 98, 8276–8282 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gasior, S.L., Wong, A.K., Kora, Y., Shinohara, A. & Bishop, D.K. Rad52 associates with RPA and functions with Rad55 and Rad57 to assemble meiotic recombination complexes. Genes Dev. 12, 2208–2221 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Melo, J.A., Cohen, J. & Toczyski, D.P. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15, 2809–2821 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Essers, J. et al. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J. 21, 2030–2037 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu, Y., Li, M., Lee, E.Y. & Maizels, N. Localization and dynamic relocalization of mammalian Rad52 during the cell cycle and in response to DNA damage. Curr. Biol. 9, 975–978 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Mortensen, U.H., Bendixen, C., Sunjevaric, I. & Rothstein, R. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl Acad. Sci. USA 93, 10729–10734 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sung, P. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272, 28194–28197 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. New, J.H., Sugiyama, T., Zaitseva, E. & Kowalczykowski, S.C. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391, 407–410 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Straight, A.F., Belmont, A.S., Robinett, C.C. & Murray, A.W. GFP tagging of budding yeast chromosomes reveals that protein–protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6, 1599–1608 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Tercero, J.A. & Diffley, J.F. Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412, 553–557 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Ranatunga, W. et al. Human RAD52 exhibits two modes of self-association. J. Biol. Chem. 276, 15876–15880 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Stasiak, A.Z. et al. The human Rad52 protein exists as a heptameric ring. Curr. Biol. 10, 337–340 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. Plessis, A., Perrin, A., Haber, J.E. & Dujon, B. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130, 451–460 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Michaelis, C., Ciosk, R. & Nasmyth, K. Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35–45 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Haber, J.E. & Leung, W.Y. Lack of chromosome territoriality in yeast: promiscuous rejoining of broken chromosome ends. Proc. Natl Acad. Sci. USA 93, 13949–13954 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Richardson, C., Moynahan, M.E. & Jasin, M. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12, 3831–3842 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Reid, R., Lisby, M. & Rothstein, R. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymo. 350, 258–277 (2002).

    Article  CAS  Google Scholar 

  25. Ormo, M. et al. Crystal structure of the Aequorea victoria green fluorescent protein. Science 273, 1392–1395 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Heim, R. & Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Thomas, B.J. & Rothstein, R. Elevated recombination rates in transcriptionally active DNA. Cell 56, 619–630 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Jensen, R.E. & Herskowitz, I. Directionality and regulation of cassette substitution in yeast. Cold Spring Harbor Symp. on Quant. Biol. 49, 97–104 (1984).

    Article  CAS  Google Scholar 

  29. Gasser, S.M. Visualizing chromatin dynamics in interphase nuclei. Science 296, 1412–1416 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Heun, P., Laroche, T., Shimada, K., Furrer, P. & Gasser, S.M. Chromosome dynamics in the yeast interphase nucleus. Science 294, 2181–2186 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The red- and blue-shifted enhanced variants (YFP(10C) and CFP(W7)) of the GFP gene and the DNA sequence encoding the monomeric version of DsRed (mRFP1) were generous gifts from R. Tsien (University of California, San Diego, CA). pJH132 was kindly provided by J.Haber (Brandeis University, Waltham, MA). pCAGS1 was a gift from M. Jasin (Memorial Sloan-Kettering Cancer Center, New York, NY). We also acknowledge the gift of yeast strains from K. Nasmyth (Research Institute of Molecular Pathology, Vienna, Austria) and A. Murray (Harvard University, Cambridge, MA). Finally, we thank J. Hudson for his generous gift of the microscope and T. Tonnessen for research support. M. L. was supported by a fellowship from the Danish Natural Science Research Council. This research was also supported by grants from the NIH to R. R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodney Rothstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Figure S1 Assembly and disassembly of spontaneous Rad52 foci.

Figure S2 Checkpoint arrest defect of mec1 sml1 cells. (PDF 2008 kb)

Figure S3 Induction of Rad52 foci by methyl methanesulfonate.

Figure S4 Insertion of an HO cut-site at iYCL016W and iYDR009C.

Figure S5 Insertion of an I-SceI cut-site at iYEL023C.

Figure S6 Insertion of an I-SceI cut-site at iYER186C.

Figure S7 Allele-replacement of GFP-LacI for YFP-LacI.

CONSTRUCTION OF YEAST STRAINS AND PLASMIDS

Table S1. Yeast strains

Table S2. Primers (DOC 36 kb)

Movie 1 (MOV 2339 kb)

Movie 2 (MOV 2894 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lisby, M., Mortensen, U. & Rothstein, R. Colocalization of multiple DNA double-strand breaks at a single Rad52 repair centre. Nat Cell Biol 5, 572–577 (2003). https://doi.org/10.1038/ncb997

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb997

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing