Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation

Abstract

Microporous metal–organic frameworks (MOFs) that display permanent porosity show great promise for a myriad of purposes. The potential applications of MOFs can be developed further and extended by encapsulating various functional species (for example, nanoparticles) within the frameworks. However, despite increasing numbers of reports of nanoparticle/MOF composites, simultaneously to control the size, composition, dispersed nature, spatial distribution and confinement of the incorporated nanoparticles within MOF matrices remains a significant challenge. Here, we report a controlled encapsulation strategy that enables surfactant-capped nanostructured objects of various sizes, shapes and compositions to be enshrouded by a zeolitic imidazolate framework (ZIF-8). The incorporated nanoparticles are well dispersed and fully confined within the ZIF-8 crystals. This strategy also allows the controlled incorporation of multiple nanoparticles within each ZIF-8 crystallite. The as-prepared nanoparticle/ZIF-8 composites exhibit active (catalytic, magnetic and optical) properties that derive from the nanoparticles as well as molecular sieving and orientation effects that originate from the framework material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Scheme of the controlled encapsulation of nanoparticles in ZIF-8 crystals.
Figure 2: TEM analysis and UV-vis absorption spectroscopy measurements of the encapsulation of 13 nm Au nanoparticles in ZIF-8 crystals.
Figure 3: TEM images of nanoparticle/ZIF-8 composites that contain different types of nanoparticles.
Figure 4: Gas-sorption data for ZIF-8 and nanoparticle/ZIF-8 composites.
Figure 5: Catalytic, magnetic and photoluminescence properties of nanoparticle/ZIF-8 composites.

Similar content being viewed by others

References

  1. Férey, G. Hybrid porous solids: past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).

    Article  Google Scholar 

  2. Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).

    Article  CAS  Google Scholar 

  3. Horike, S., Shimomura, S. & Kitagawa, S. Soft porous crystals. Nature Chem. 1, 695–704 (2009).

    Article  CAS  Google Scholar 

  4. Rosi, N. L. et al. Hydrogen storage in microporous metal–organic frameworks. Science 300, 1127–1129 (2003).

    Article  CAS  Google Scholar 

  5. Murray, L. J., Dincă, M. & Long, J. R. Hydrogen storage in metal–organic frameworks. Chem. Soc. Rev. 38, 1294–1314 (2009).

    Article  CAS  Google Scholar 

  6. Li, J-R., Kuppler, R. J. & Zhou, H-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 38, 1477–1504 (2009).

    Article  CAS  Google Scholar 

  7. Lee, J. Y. et al. Metal–organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009).

    Article  CAS  Google Scholar 

  8. Ma, L., Abney, C. & Lin, W. Enantioselective catalysis with homochiral metal–organic frameworks. Chem. Soc. Rev. 38, 1248–1256 (2009).

    Article  CAS  Google Scholar 

  9. Allendorf, M. D., Bauer, C. A., Bhakta, R. K. & Houk, R. J. T. Luminescent metal–organic frameworks. Chem. Soc. Rev. 38, 1330–1352 (2009).

    Article  CAS  Google Scholar 

  10. Horcajada, P. et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nature Mater. 9, 172–178 (2010).

    Article  CAS  Google Scholar 

  11. Chae, H. K. et al. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427, 523–527 (2004).

    Article  CAS  Google Scholar 

  12. Bureekaew, S. et al. One-dimensional imidazole aggregate in aluminium porous coordination polymers with high proton conductivity. Nature Mater. 8, 831–836 (2009).

    Article  CAS  Google Scholar 

  13. Hurd, J. A. et al. Anhydrous proton conduction at 150 °C in a crystalline metal–organic framework. Nature Chem. 1, 705–710 (2009).

    Article  CAS  Google Scholar 

  14. Lykourinou, V. et al. Immobilization of MP-11 into a mesoporous metal–organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. J. Am. Chem. Soc. 133, 10382–10385 (2011).

    Article  CAS  Google Scholar 

  15. Larsen, R. W. et al. Mimicking heme enzymes in the solid state: metal–organic materials with selectively encapsulated heme. J. Am. Chem. Soc. 133, 10356–10359 (2011).

    Article  CAS  Google Scholar 

  16. Sun, C-Y. et al. Highly stable crystalline catalysts based on a microporous metal–organic framework and polyoxometalates. J. Am. Chem. Soc. 131, 1883–1888 (2009).

    Article  CAS  Google Scholar 

  17. Xiang, Z. et al. Metal–organic frameworks with incorporated carbon nanotubes: improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 50, 491–494 (2011).

    Article  CAS  Google Scholar 

  18. Jahan, M., Bao, Q., Yang, J-X. & Loh, K. P. Structure-directing role of graphene in the synthesis of metal–organic framework nanowire. J. Am. Chem. Soc. 132, 14487–14495 (2010).

    Article  CAS  Google Scholar 

  19. Cushing, B. L., Kolesnichenko, V. L. & O'Connor, C. J. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem. Rev. 104, 3893–3946 (2004).

    Article  CAS  Google Scholar 

  20. Goesmann, H. & Feldmann, C. Nanoparticulate functional materials. Angew. Chem. Int. Ed. 49, 1362–1395 (2010).

    Article  CAS  Google Scholar 

  21. Shylesh, S., Schünemann, V. & Thiel, W. R. Magnetically separable nanocatalysts: bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 49, 3428–3459 (2010).

    Article  CAS  Google Scholar 

  22. Stark, W. J. Nanoparticles in biological systems. Angew. Chem. Int. Ed. 50, 1242–1258 (2011).

    Article  CAS  Google Scholar 

  23. Hermes, S. et al. Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. Angew. Chem. Int. Ed. 44, 6237–6241 (2005).

    Article  CAS  Google Scholar 

  24. Houk, R. J. T. et al. Silver cluster formation, dynamics, and chemistry in metal–organic frameworks. Nano Lett. 9, 3413–3418 (2009).

    Article  CAS  Google Scholar 

  25. Zlotea, C. et al. Pd nanoparticles embedded into a metal–organic framework: synthesis, structural characteristics, and hydrogen sorption properties. J. Am. Chem. Soc. 132, 2991–2997 (2010).

    Article  CAS  Google Scholar 

  26. Jiang, H-L. et al. Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal–organic framework. J. Am. Chem. Soc. 131, 11302–11303 (2009).

    Article  CAS  Google Scholar 

  27. Esken, D. et al. Au@ZIFs: stabilization and encapsulation of cavity-size matching gold clusters inside functionalized zeolite imidazolate frameworks, ZIFs. Chem. Mater. 22, 6393–6401 (2010).

    Article  CAS  Google Scholar 

  28. Meilikhov, M. et al. Metals@MOFs-loading MOFs with metal nanoparticles for hybrid functions. Eur. J. Inorg. Chem. 2010, 3701–3714 (2010).

    Article  Google Scholar 

  29. Jiang, H-L. & Xu, Q. Porous metal–organic frameworks as platforms for functional applications. Chem. Commun. 47, 3351–3370 (2011).

    Article  CAS  Google Scholar 

  30. Gu, X., Lu, Z-H., Jiang, H-L., Akita, T. & Xu, Q. Synergistic catalysis of metal–organic framework-immobilized Au–Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. J. Am. Chem. Soc. 133, 11822–11825 (2011).

    Article  CAS  Google Scholar 

  31. Park, T-H. et al. Highly dispersed palladium(II) in a defective metal–organic framework: application to C–H activation and functionalization. J. Am. Chem. Soc. 133, 20138–20141 (2011).

    Article  CAS  Google Scholar 

  32. Ameloot, R. et al. Metal–organic framework single crystals as photoactive matrices for the generation of metallic microstructures. Adv. Mater. 23, 1788–1791 (2011).

    Article  CAS  Google Scholar 

  33. Falcaro, P. et al. A new method to position and functionalize metal–organic framework crystals. Nature Commun. 2, 237 doi: 10.1038/ncomms1234 (2011).

    Article  Google Scholar 

  34. Lohe, M. R. et al. Heating and separation using nanomagnet-functionalized metal–organic frameworks. Chem. Commun. 47, 3075–3077 (2011).

    Article  CAS  Google Scholar 

  35. Buso, D., Nairn, K. M., Gimona, M., Hill, A. J. & Falcaro, P. Fast synthesis of MOF-5 microcrystals using sol–gel SiO2 nanoparticles. Chem. Mater. 23, 929–934 (2011).

    Article  CAS  Google Scholar 

  36. Sugikawa, K., Furukawa Y. & Sada K. SERS-active metal–organic frameworks embedding gold nanorods. Chem. Mater. 23, 3132–3134 (2011).

    Article  CAS  Google Scholar 

  37. Tsuruoka, T., Kawasaki, H., Nawafune, H. & Akamatsu, K. Controlled self-assembly of metal–organic frameworks on metal nanoparticles for efficient synthesis of hybrid nanostructures. ACS Appl. Mater. Interfaces 3, 3788–3791 (2011).

    Article  CAS  Google Scholar 

  38. Li, Z. & Zhang, Y. Monodisperse silica-coated polyvinylpyrrolidone/NaYF4 nanocrystals with multicolor upconversion fluorescence emission. Angew. Chem. Int. Ed. 45, 7732–7735 (2006).

    Article  CAS  Google Scholar 

  39. Sun, Y. & Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176–2179 (2002).

    Article  CAS  Google Scholar 

  40. Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

    Article  CAS  Google Scholar 

  41. Cravillon, J. et al. Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework. Chem. Mater. 21, 1410–1412 (2009).

    Article  CAS  Google Scholar 

  42. Bux, H. et al. Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis. J. Am. Chem. Soc. 131, 16000–16001 (2009).

    Article  CAS  Google Scholar 

  43. Lu, G. & Hupp, J. T. Metal–organic frameworks as sensors: a ZIF-8 based Fabry–Pérot device as a selective sensor for chemical vapors and gases. J. Am. Chem. Soc. 132, 7832–7833 (2010).

    Article  CAS  Google Scholar 

  44. Liz-Marzán, L. M., Giersig, M. & Mulvaney, P. Synthesis of nanosized gold–silica core–shell particles. Langmuir 12, 4329–4335 (1996).

    Article  Google Scholar 

  45. Cho, E. C., Choi, S-W., Camargo, P. H. C. & Xia, Y. Thiol-induced assembly of Au nanoparticles into chainlike structures and their fixing by encapsulation in silica shells or gelatin microspheres. Langmuir 26, 10005–10012 (2010).

    Article  CAS  Google Scholar 

  46. Graf, C., Vossen, D. L. J., Imhof, A. & van Blaaderen, A. A general method to coat colloidal particles with silica. Langmuir 19, 6693–6700 (2003).

    Article  CAS  Google Scholar 

  47. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  Google Scholar 

  48. Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nature Mater. 10, 968–973 (2011).

    Article  CAS  Google Scholar 

  49. Zhang, H. et al. From water-soluble CdTe nanocrystals to fluorescent nanocrystal–polymer transparent composites using polymerizable surfactants. Adv. Mater. 15, 777–780 (2003).

    Article  CAS  Google Scholar 

  50. Wuister, S. F., Donegá, C. D. M. & Meijerink, A. Influence of thiol capping on the exciton luminescence and decay kinetics of CdTe and CdSe quantum dots. J. Phys. Chem. B 108, 17393–17397 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.H. acknowledges financial support from Nanyang Technological University (start-up grant), the AcRF Tier 1 (RG 42/10) from the Ministry of Education, Singapore, and the Singapore National Research Foundation under the Campus for Research Excellence and Technological Enterprise programme Nanomaterials for Energy and Water Management. The Northwestern group acknowledges financial support from the Air Force Office of Scientific Research and Defense Threat Reduction Agency (grant no. HDTRA-09-1-0007). We thank J. Wang and L. You for the measurement of magnetization curves. We thank Y.M. Lam and J.Y. Lek for the gift of CdSe nanoparticles.

Author information

Authors and Affiliations

Authors

Contributions

G.L. conceived the idea, designed and performed the experiments, analysed the results and co-drafted the manuscript. S.L. was primarily responsible for the TEM characterization. Z.G. and Y.Y. designed and performed the catalysis experiments. B.G.H., Y.W. and X.W. assisted with gas-sorption studies. X.Q. and H.Z. synthesized magnetic nanoparticles. S.H. and X.L. carried out the synthesis of upconversion nanocrystals and luminescence analysis of the corresponding composite materials. J.T.H. and O.K.F. contributed to the general methodology, assisted with data interpretation and reviewed the manuscript. F.H. supervised the project, helped design the experiments and co-drafted the manuscript. All authors contributed to the analysis of the manuscript.

Corresponding authors

Correspondence to Joseph T. Hupp or Fengwei Huo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4441 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, G., Li, S., Guo, Z. et al. Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nature Chem 4, 310–316 (2012). https://doi.org/10.1038/nchem.1272

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1272

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing