Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering

Abstract

Chemical functionalization of low-dimensional materials such as nanotubes, nanowires and graphene leads to profound changes in their properties and is essential for solubilizing them in common solvents. Covalent attachment of functional groups is generally achieved at defect sites, which facilitate electron transfer. Here, we describe a simple and general method for covalent functionalization of two-dimensional transition metal dichalcogenide nanosheets (MoS2, WS2 and MoSe2), which does not rely on defect engineering. The functionalization reaction is instead facilitated by electron transfer between the electron-rich metallic 1T phase and an organohalide reactant, resulting in functional groups that are covalently attached to the chalcogen atoms of the transition metal dichalcogenide. The attachment of functional groups leads to dramatic changes in the optoelectronic properties of the material. For example, we show that it renders the metallic 1T phase semiconducting, and gives it strong and tunable photoluminescence and gate modulation in field-effect transistors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of functionalization scheme.
Figure 2: XPS spectra of functionalized TMDs.
Figure 3: ATR-FTIR spectra of methyl-functionalized TMDs.
Figure 4: NMR spectra for functionalized TMDs.
Figure 5: Photoluminescence from functionalized 1T-phase MoS2.

Similar content being viewed by others

References

  1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).

    Article  CAS  Google Scholar 

  2. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    Article  CAS  Google Scholar 

  3. Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nature Mater. 12, 850–855 (2013).

    Article  CAS  Google Scholar 

  4. Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274–10277 (2013).

    Article  CAS  Google Scholar 

  5. Voiry, D. et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 13, 6222–6227 (2013).

    Article  CAS  Google Scholar 

  6. Ataca, C. & Ciraci, S. Functionalization of single-layer MoS2 honeycomb structures. J. Phys. Chem. C 115, 13303–13311 (2011).

    Article  CAS  Google Scholar 

  7. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature Chem. 5, 263–275 (2013).

    Article  Google Scholar 

  8. Py, M. A. & Haering, R. R. Structural destabilization induced by lithium intercalation in MoS2 and related compounds. Can. J. Phys. 61, 76–84 (1983).

    Article  CAS  Google Scholar 

  9. Heising, J. & Kanatzidis, M. G. Structure of restacked MoS2 and WS2 elucidated by electron crystallography. J. Am. Chem. Soc. 121, 638–643 (1999).

    Article  CAS  Google Scholar 

  10. Eda, G. et al. Photoluminescence from chemically exfoliated MoS2 . Nano Lett. 11, 5111–5116 (2011).

    Article  CAS  Google Scholar 

  11. Eda, G. et al. Coherent atomic and electronic heterostructures of single-layer MoS2 . ACS Nano 6, 7311–7317 (2012).

    Article  CAS  Google Scholar 

  12. Tasis, D., Tagmatarchis, N., Bianco, A. & Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 106, 1105–1136 (2006).

    Article  CAS  Google Scholar 

  13. Hirsch, A. Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 41, 1853–1859 (2002).

    Article  CAS  Google Scholar 

  14. Quintana, M., Vazquez, E. & Prato, M. Organic functionalization of graphene in dispersions. Acc. Chem. Res. 46, 138–148 (2013).

    Article  CAS  Google Scholar 

  15. Liang, F. et al. A convenient route to functionalized carbon nanotubes. Nano Lett. 4, 1257–1260 (2004).

    Article  CAS  Google Scholar 

  16. Voiry, D., Roubeau, O. & Pénicaud, A. Stoichiometric control of single walled carbon nanotubes functionalization. J. Mater. Chem. 20, 4385–4391 (2010).

    Article  CAS  Google Scholar 

  17. Syrgiannis, Z. et al. Reductive retrofunctionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. 49, 3322–3325 (2010).

    Article  CAS  Google Scholar 

  18. Chakraborty, S., Chattopadhyay, J., Guo, W. & Billups, W. E. Functionalization of potassium graphite. Angew. Chem. Int. Ed. 46, 4486–4488 (2007).

    Article  CAS  Google Scholar 

  19. Englert, J. M. et al. Covalent bulk functionalization of graphene. Nature Chem. 3, 279–286 (2011).

    Article  CAS  Google Scholar 

  20. Jiang, S. et al. Improving the stability and optical properties of germanane via one-step covalent methyl-termination. Nature Commun. 5, 3389 (2014)

    Article  Google Scholar 

  21. Canfield, D. & Parkinson, B. A. Improvement of energy conversion efficiency by specific chemical treatments of molybdenum selenide (n-MoSe2) and tungsten selenide (n-WSe2) photoanodes. J. Am. Chem. Soc. 103, 1279–1281 (1981).

    Article  CAS  Google Scholar 

  22. Chou, S. S. et al. Ligand conjugation of chemically exfoliated MoS2 . J. Am. Chem. Soc. 135, 4584–4587 (2013).

    Article  CAS  Google Scholar 

  23. Heising, J. & Kanatzidis, M. G. Exfoliated and restacked MoS2 and WS2: ionic or neutral species? Encapsulation and ordering of hard electropositive cations. J. Am. Chem. Soc. 121, 11720–11732 (1999).

    Article  CAS  Google Scholar 

  24. Golub, A. S., Zubavichus, Y. V., Slovokhotov, Y. L., Novikov, Y. N. & Danot, M. Layered compounds assembled from molybdenum disulfide single-layers and alkylammonium cations. Solid State Ion. 128, 151–160 (2000).

    Article  CAS  Google Scholar 

  25. Joensen, P., Frindt, R. F. & Morrison, S. R. Single-layer MoS2 . Mater. Res. Bull. 21, 457–461 (1986).

    Article  CAS  Google Scholar 

  26. Yang, D. & Frindt, R. F. Li-intercalation and exfoliation of WS2 . J. Phys. Chem. Solids 57, 1113–1116 (1996).

    Article  CAS  Google Scholar 

  27. Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, 2001).

    Google Scholar 

  28. Aynsley, E. E., Greenwood, N. N. & Sprague, M. J. The oxidation of potassium selenocyanate by iodine pentafluoride. J. Chem. Soc. (Resumed) 704–708 (1964).

  29. Khan, M. A. & Raees, H. ChemInform abstract: synthesis of a new bis-harmine selenide. ChemInform 28, 1779–1780 (1997).

    Google Scholar 

  30. Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Article  Google Scholar 

  31. Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2 . Nano Lett. 10, 1271–1275 (2010).

    Article  CAS  Google Scholar 

  32. Tongay, S. et al. Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

M. Chhowalla, D.V. and R.K. acknowledge financial support from the National Science Foundation Division of Graduate Education (NSF DGE) 0903661. T.A. and A.G. acknowledge financial assistance from the NSF (CAREER Chemistry-1004218, DMR-0968937, NanoEHS-1134289, NSF-Analytical Chemistry Instrumentation Facility and a Special Creativity Grant). C.S. acknowledges the Conselho Nacional de Desenvolvimento Científico e Tecnológico-Brazil, for a fellowship. T.F. acknowledges partial support from Japan Science and Technology Agency-PRESTO (‘New Materials Science and Element Strategy’) and Japan Society for Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas ‘Science of Atomic Layers’, 90363382). The authors thank G.S. Hall for ATR-FTIR measurements. G. Recine at New York University Polytechnic is thanked for computing time.

Author information

Authors and Affiliations

Authors

Contributions

M. Chhowalla conceived the idea and designed the experiments. D.V. conceived the idea and designed the experiments with M. Chhowalla, functionalized the TMDs, characterized them with Raman, TGA, UV-vis and XPS analysis. M. Chhowalla and D.V. analysed the data and wrote the manuscript. R.K. fabricated the field-effect transistors and helped C.S. with FET measurements. C.S. measured FET performance. D.K. performed first-principles calculations of the atomic structure of functionalized MoS2. T.F. and M. Chen performed the STEM work. A.G. carried out the 13C NMR, XRD and FTIR experiments. A.G. and T.A. discussed the results with M. Chhowalla and D.V.

Corresponding author

Correspondence to Manish Chhowalla.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1116 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voiry, D., Goswami, A., Kappera, R. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nature Chem 7, 45–49 (2015). https://doi.org/10.1038/nchem.2108

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2108

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing