Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Extreme compressibility in LnFe(CN)6 coordination framework materials via molecular gears and torsion springs

Abstract

The mechanical flexibility of coordination frameworks can lead to a range of highly anomalous structural behaviours. Here, we demonstrate the extreme compressibility of the LnFe(CN)6 frameworks (Ln = Ho, Lu or Y), which reversibly compress by 20% in volume under the relatively low pressure of 1 GPa, one of the largest known pressure responses for any crystalline material. We delineate in detail the mechanism for this high compressibility, where the LnN6 units act like torsion springs synchronized by rigid Fe(CN)6 units performing the role of gears. The materials also show significant negative linear compressibility via a cam-like effect. The torsional mechanism is fundamentally distinct from the deformation mechanisms prevalent in other flexible solids and relies on competition between locally unstable metal coordination geometries and the constraints of the framework connectivity, a discovery that has implications for the strategic design of new materials with exceptional mechanical properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and pressure-induced behaviour of LnFe(CN)6 frameworks.
Figure 2: Spring-and-gear mechanism for compression.
Figure 3: Energetic origin of the behaviour.

Similar content being viewed by others

References

  1. Anderson, M. S. & Swenson, C. A. Experimental compressions for sodium, potassium, and rubidium metals to 20 kbar from 4.2 to 300 K. Phys. Rev. B 28, 5395–5418 (1983).

    Article  CAS  Google Scholar 

  2. Anderson, M. S. & Swenson, C. A. Experimental equations of state for cesium and lithium metals to 20 kbar and the high-pressure behavior of the alkali-metals. Phys. Rev. B 31, 668–680 (1985).

    Article  CAS  Google Scholar 

  3. Packard, J. R. & Swenson, C. A. An experimental equation of state for solid xenon. J. Phys. Chem. Solids 24, 1405–1418 (1963).

    Article  CAS  Google Scholar 

  4. Serre, C. et al. Role of solvent–host interactions that lead to very large swelling of hybrid frameworks. Science 315, 1828–1831 (2007).

    Article  CAS  Google Scholar 

  5. Lee, Y., Vogt, T., Hriljac, J. A., Parise, J. B. & Artioli, G. Pressure-induced volume expansion of zeolites in the natrolite family. J. Am. Chem. Soc. 124, 5466–5475 (2002).

    Article  CAS  Google Scholar 

  6. Goodwin, A. L., Keen, D. A. & Tucker, M. G. Large negative linear compressibility of Ag3[Co(CN)6]. Proc. Natl Acad. Sci. USA 105, 18708–18713 (2008).

    Article  CAS  Google Scholar 

  7. Chapman, K. W., Halder, G. J. & Chupas, P. J. Pressure-induced amorphization and porosity modification in a metal–organic framework. J. Am. Chem. Soc. 131, 17546–17547 (2009).

    Article  CAS  Google Scholar 

  8. Bennett, T. D. et al. Reversible pressure-induced amorphization of a zeolitic imidazolate framework (ZIF-4). Chem. Commun. 47, 7983–7985 (2011).

    Article  CAS  Google Scholar 

  9. Cairns, A. B., Thompson, A. L., Tucker, M. G., Haines, J. & Goodwin, A. L. Rational design of materials with extreme negative compressibility: selective soft-mode frustration in KMn[Ag(CN)2]3 . J. Am. Chem. Soc. 134, 4454–4456 (2011).

    Article  Google Scholar 

  10. Cairns, A. B. et al. Giant negative linear compressibility in zinc dicyanoaurate. Nature Mater. 12, 212–216 (2013).

    Article  CAS  Google Scholar 

  11. Cai, W. & Katrusiak, A. Giant negative linear compression positively coupled to massive thermal expansion in a metal–organic framework. Nature Commun. 5, 4337 (2014).

    Article  CAS  Google Scholar 

  12. Cairns, A. B. & Goodwin, A. Negative linear compressibility. Phys. Chem. Chem. Phys. 17, 20449–20465 (2015).

    Article  CAS  Google Scholar 

  13. Goodwin, A. L. & Kepert, C. J. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. Phys. Rev. B 71, 140301 (2005).

    Article  Google Scholar 

  14. Chapman, K. W. & Chupas, P. J. Pressure enhancement of negative thermal expansion behavior and induced framework softening in zinc cyanide. J. Am. Chem. Soc. 129, 10090–10091 (2007).

    Article  CAS  Google Scholar 

  15. Phillips, A. E., Goodwin, A. L., Halder, G. J., Southon, P. D. & Kepert, C. J. Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. Angew. Chem. Int. Ed. 47, 1396–1399 (2008).

    Article  CAS  Google Scholar 

  16. Liu, Y. et al. Reversible structural transition in MIL-53 with large temperature hysteresis. J. Am. Chem. Soc. 130, 11813–11818 (2008).

    Article  CAS  Google Scholar 

  17. Das, D., Jacobs, T. & Barbour, L. J. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. Nature Mater. 9, 36–39 (2010).

    Article  CAS  Google Scholar 

  18. Duyker, S. G., Peterson, V. K., Kearley, G. J., Ramirez-Cuesta, A. J. & Kepert, C. J. Negative thermal expansion in LnCo(CN)6 (Ln=La, Pr, Sm, Ho, Lu, Y): mechanisms and compositional trends. Angew. Chem. Int. Ed. 52, 5266–5270 (2013).

    Article  CAS  Google Scholar 

  19. Yao, Z.-S. et al. Molecular motor-driven abrupt anisotropic shape change in a single crystal of a Ni complex. Nature Chem. 6, 1079–1083 (2014).

    Article  CAS  Google Scholar 

  20. Fortes, A. D., Suard, E. & Knight, K. S. Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate. Science 331, 742–746 (2011).

    Article  CAS  Google Scholar 

  21. Shepherd, H. J. et al. Antagonism between extreme negative linear compression and spin crossover in [Fe(dpp)2(NCS)2]py. Angew. Chem. Int. Ed. 51, 3910–3914 (2012).

    Article  CAS  Google Scholar 

  22. Cai, W., He, J., Li, W. & Katrusiak, A. Anomalous compression of a weakly CHO bonded nonlinear optical molecular crystal. J. Mater. Chem. C 2, 6471–6476 (2014).

    Article  CAS  Google Scholar 

  23. Pretsch, T., Chapman, K. W., Halder, G. J. & Kepert, C. J. Dehydration of the nanoporous coordination framework ErIII[CoIII(CN)6]·4(H2O): single crystal to single crystal transformation and negative thermal expansion in ErIII[CoIII(CN)6]. Chem. Commun. 1857–1859 (2006).

  24. Kepert, D. L. Inorganic Stereochemistry (Springer-Verlag, 1982).

    Book  Google Scholar 

  25. Kono, R. The dynamic bulk viscosity of polystyrene and polymethyl methacrylate. J. Phys. Soc. Jpn 15, 718–725 (1960).

    Article  CAS  Google Scholar 

  26. Neimark, A. V. et al. Structural transitions in MIL-53 (Cr): view from outside and inside. Langmuir 27, 4734–4741 (2011).

    Article  CAS  Google Scholar 

  27. Duyker, S. G. et al. Topotactic structural conversion and hydration-dependent thermal expansion in robust LnMIII(CN)6·nH2O and flexible ALnFeII(CN)6·nH2O frameworks (A = Li, Na, K; Ln = La-Lu, Y; M = Co, Fe; 0 ≤ n ≤ 5). Chem. Sci. 5, 3409–3417 (2014).

    Article  CAS  Google Scholar 

  28. Serra-Crespo, P. et al. Experimental evidence of negative linear compressibility in the MIL-53 metal–organic framework family. CrystEngComm 17, 276–280 (2015).

    Article  CAS  Google Scholar 

  29. Baughman, R. H., Stafström, S., Cui, C. & Dantas, S. O. Materials with negative compressibilities in one or more dimensions. Science 279, 1522–1524 (1998).

    Article  CAS  Google Scholar 

  30. Kunkely, H. & Vogler, A. Optical properties of GdIII[MIII(CN)6] with M=Cr and Co. Phosphorescence from ligand-field states of [M(CN)6]3− under ambient conditions. Inorg. Chem. Commun. 7, 770–772 (2004).

    Article  CAS  Google Scholar 

  31. Studer, A. J., Hagen, M. E. & Noakes, T. J. Wombat: the high-intensity powder diffractometer at the OPAL reactor. Physica B 385–386, 1013–1015 (2006).

    Article  Google Scholar 

  32. Brown, J. M. The NaCl pressure standard. J. Appl. Phys. 86, 5801 (1999).

    Article  CAS  Google Scholar 

  33. Besson, J. M. et al. Neutron powder diffraction above 10 GPa. Physica B 180, 907–910 (1992).

    Article  Google Scholar 

  34. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (Los Alamos National Laboratory, 2000).

    Google Scholar 

  35. Toby, B. H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001).

    Article  CAS  Google Scholar 

  36. Cliffe, M. J. & Goodwin, A. L. PASCal: a principal axis strain calculator for thermal expansion and compressibility determination. J. Appl. Crystallogr. 45, 1321–1329 (2012).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  39. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  41. Minisini, B., Hadj, L. E., Fomena, M. L., Garderen, N. V. & Tsobnang, F. A density functional study of the pressure induced phase transition in LiYF4 . J. Phys. Condens. Matter 18, 2429 (2006).

    Article  CAS  Google Scholar 

  42. Bouzid, A. et al. in Molecular Dynamics Simulations of Disordered Materials (eds Massobrio, C., Du, J., Bernasconi, M. & Salmon, P. S. ) Ch. 12, 313–344 (Springer Series in Materials Science 215, Springer International, 2015).

    Google Scholar 

  43. Kearley, G. J., Johnson, M. R. & Tomkinson, J. Intermolecular interactions in solid benzene. J. Chem. Phys. 124, 044514 (2006).

    Article  CAS  Google Scholar 

  44. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  45. Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508–517 (1990).

    Article  CAS  Google Scholar 

  46. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 113, 7756–7764 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.J.K. acknowledges financial support from the Australian Research Council. The neutron scattering experiments were performed under OPAL proposal P2455. The authors thank the Bragg Institute sample environment team for their assistance.

Author information

Authors and Affiliations

Authors

Contributions

S.G.D., V.K.P. and C.J.K. conceived the study, analysed and interpreted the data, and wrote the paper. S.G.D., V.K.P., G.J.K. and A.J.S. performed the experiments and DFT calculations.

Corresponding authors

Correspondence to Vanessa K. Peterson or Cameron J. Kepert.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2044 kb)

Supplementary movie

Supplementary movie 1 (AVI 4483 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duyker, S., Peterson, V., Kearley, G. et al. Extreme compressibility in LnFe(CN)6 coordination framework materials via molecular gears and torsion springs. Nature Chem 8, 270–275 (2016). https://doi.org/10.1038/nchem.2431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2431

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing