Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes

Abstract

Shape- and size-controlled supported metal and intermetallic nanocrystallites are of increasing interest because of their catalytic and electrocatalytic properties. In particular, intermetallics PtX (X = Bi, Pb, Pd, Ru) are very attractive because of their high activity as fuel-cell anode catalysts for formic acid or methanol oxidation. These are normally synthesized using high-temperature techniques, but rigorous size control is very challenging. Even low-temperature techniques typically produce nanoparticles with dimensions much greater than the optimum <6 nm required for fuel cell catalysis. Here, we present a simple and robust, chemically controlled process for synthesizing size-controlled noble metal or bimetallic nanocrystallites embedded within the porous structure of ordered mesoporous carbon (OMC). By using surface-modified ordered mesoporous carbon to trap the metal precursors, nanocrystallites are formed with monodisperse sizes as low as 1.5 nm, which can be tuned up to 3.5 nm. To the best of our knowledge, 3-nm ordered mesoporous carbon-supported PtBi nanoparticles exhibit the highest mass activity for formic acid oxidation reported to date, and over double that of Pt–Au.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic illustrating the nucleated-growth synthesis of OMC-supported noble metal and intermetallic nanocrystallites.
Figure 2: TEM images demonstrating the formation of OMC-supported platinum nanocrystallites with dimensions of <2 nm.
Figure 3: XPS spectra of platinum and PtBi nanocrystallites supported on OMC.
Figure 4: TEM images and EDX maps of OMC-PtBi, revealing homogeneously dispersed 2–3 nm crystallites of the ordered intermetallic phase.
Figure 5: Cyclic voltammograms obtained for formic acid oxidation.
Figure 6: TEM and SEM images and an elemental map of nanocrystalline palladium (<3 nm) supported on OMC, prepared by the sulfur-functionalized OMC strategy.

Similar content being viewed by others

References

  1. Weber, M., Wang, J. T., Wasmus, S. & Savinell, R. F. Formic acid oxidation in a polymer electrolyte fuel cell. J. Electrochem. Soc. 143, L158–L160 (1996).

    Article  CAS  Google Scholar 

  2. Rice, C. et al. Direct formic acid fuel cells. J. Power Sources 111, 83–89 (2002).

    Article  CAS  Google Scholar 

  3. Rhee, Y.-W., Ha, S. Y. & Masel, R. I. Crossover of formic acid through Nafion® membranes. J. Power Sources 117, 35–38 (2003).

    Article  CAS  Google Scholar 

  4. Park, S., Xie, Y. & Weaver, M. J. Electrocatalytic pathways on carbon-supported platinum nanoparticles: comparison of particle-size-dependent rates of methanol, formic acid, and formaldehyde electrooxidation. Langmuir 18, 5792–5798 (2002).

    Article  CAS  Google Scholar 

  5. Lović, J. D. et al. Kinetic study of formic acid oxidation on carbon-supported platinum electrocatalyst. J. Electroanal. Chem. 581, 294–302 (2005).

    Article  Google Scholar 

  6. Capon, A. & Parsons, R. J. The oxidation of formic acid at noble metal electrodes. Part III. Intermediates and mechanism on platinum electrodes. Electroanal. Chem. 45, 205–231 (1973).

    Article  CAS  Google Scholar 

  7. Wolter, O., Willsau, J. & Heitbaum, J. Reaction pathways of the anodic oxidation of formic acid on Pt evidenced by 18O labeling—a DEMS study. J. Electrochem. Soc. 132, 1635–1638 (1985).

    Article  CAS  Google Scholar 

  8. Sun, S. G. & Clavilier, J. The mechanism of electrocatalytic oxidation of formic acid on Pt (100) and Pt (111) in sulphuric acid solution: an emirs study. J. Electroanal. Chem. 240, 147–159 (1988).

    Article  CAS  Google Scholar 

  9. Chang, S.-C., Ho, Y. & Weaver, M. J. Applications of real-time infrared spectroscopy to electrocatalysis at bimetallic surfaces: I. Electrooxidation of formic acid and methanol on bismuth-modified Pt(111) and Pt(100). Surf. Sci. 265, 81–94 (1992).

    Article  CAS  Google Scholar 

  10. Llorca, M. J., Herrero, E., Feliu, J. M. & Aldaz, A. Formic acid oxidation on Pt(111) electrodes modified by irreversibly adsorbed selenium. J. Electroanal. Chem. 373, 217–225 (1994).

    Article  CAS  Google Scholar 

  11. Leiva, E., Iwasita, T., Herrero, E. & Feliu, J. M. Effect of adatoms in the electrocatalysis of HCOOH oxidation. A theoretical model. Langmuir 13, 6287–6293 (1997).

    Article  CAS  Google Scholar 

  12. Smith, S. P. E. & Abruña, H. D. Structural effects on the oxidation of HCOOH by bismuth modified Pt(111) electrodes with (110) monatomic steps. J. Electroanal. Chem. 467, 43–49 (1999).

    Article  CAS  Google Scholar 

  13. Schmidt, T. J. & Behm, R. J. Formic acid oxidation on pure and Bi-modified Pt(111): temperature effects. Langmuir 16, 8159–8166 (2000).

    Article  CAS  Google Scholar 

  14. Spendelow, J. S. & Wieckowski, A. Noble metal decoration of single crystal platinum surfaces to create well-defined bimetallic electrocatalysts. Phys. Chem. Chem. Phys. 6, 5094–5118 (2004).

    Article  CAS  Google Scholar 

  15. Casado-Rivera, E. et al. Electrocatalytic oxidation of formic acid at an ordered intermetallic PtBi surface. ChemPhysChem. 4, 193–199 (2003).

    Article  CAS  Google Scholar 

  16. Casado-Rivera, E. et al. Electrocatalytic activity of ordered intermetallic phases for fuel cell applications. J. Am. Chem. Soc. 126, 4043–4049 (2004).

    Article  CAS  Google Scholar 

  17. Rice, C., Ha, S., Masel, R. I. & Wieckowski, A. Catalysts for direct formic acid fuel cells. J. Power Sources 115, 229–235 (2003).

    Article  CAS  Google Scholar 

  18. Roychowdhury, C., Matsumoto, F., Mutolo, P. F., Abruña, H. D. & DiSalvo, F. J. Synthesis, characterization, and electrocatalytic activity of PtBi nanoparticles prepared by the polyol process. Chem. Mater. 17, 5871–5876 (2005).

    Article  CAS  Google Scholar 

  19. Roychowdhury, C. et al. Synthesis, characterization, and electrocatalytic activity of PtBi and PtPb nanoparticles prepared by borohydride reduction in methanol. Chem. Mater. 18, 3365–3372 (2006).

    Article  CAS  Google Scholar 

  20. Matsumoto, F., Roychowdhury, C., DiSalvo, F. J. & Abruña, H. D. Electrocatalytic activity of ordered intermetallic PtPb nanoparticles prepared by borohydride reduction toward formic acid oxidation. J. Electrochem. Soc. 155, B148–B154 (2008).

    Article  CAS  Google Scholar 

  21. Bauer, J. C., Chen, X., Liu, Q., Phan, T.-H. & Schaak, R. E. Converting nanocrystalline metals into alloys and intermetallic compounds for applications in catalysis. J. Mater. Chem. 18, 275–282 (2008).

    Article  CAS  Google Scholar 

  22. Chan, K.-Y., Ding, J., Ren, J., Cheng, S. & Tsang, K. Y. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 14, 505–516 (2004).

    Article  CAS  Google Scholar 

  23. Ryoo, R., Joo, S. H. & Jun, S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J. Phys. Chem. B 103, 7743–7746 (1999).

    Article  CAS  Google Scholar 

  24. Joo, S. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).

    Article  CAS  Google Scholar 

  25. Joo, J. B., Kim, P., Kim, W., Kim, J. & Yi, J. Preparation of mesoporous carbon templated by silica particles for use as a catalyst support in polymer electrolyte membrane fuel cells. Catal. Today 111, 171–175 (2006).

    Article  CAS  Google Scholar 

  26. Nam, J.-H., Jang, Y.-Y., Kwon, Y.-U. & Nam, J.-D. Direct methanol fuel cell Pt–carbon catalysts by using SBA-15 nanoporous templates. Electrochem. Commun. 6, 737–741 (2004).

    Article  CAS  Google Scholar 

  27. Yu, J.-S., Kang, S., Yoon, S. B. & Chai, G. Fabrication of ordered uniform porous carbon networks and their application to a catalyst supporter. J. Am. Chem. Soc. 124, 9382–9383 (2002).

    Article  CAS  Google Scholar 

  28. Liu, H. et al. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95–110 (2006).

    Article  CAS  Google Scholar 

  29. Li, Z., Yan, W. & Dai, S. Surface functionalization of ordered mesoporous carbons—a comparative study. Langmuir 21, 11999–12006 (2005).

    Article  CAS  Google Scholar 

  30. Guo, Z. et al. Adsorption of vitamin B12 on ordered mesoporous carbons coated with PMMA. Carbon 43, 2344–2351 (2005).

    Article  CAS  Google Scholar 

  31. Calvillo, L. et al. Platinum supported on functionalized ordered mesoporous carbon as electrocatalyst for direct methanol fuel cells. J. Power Sources 169, 59–64 (2007).

    Article  CAS  Google Scholar 

  32. Choi, W. et al. Platinum nanoclusters studded in the microporous nanowalls of ordered mesoporous carbon. Adv. Mater. 17, 446–451 (2005).

    Article  CAS  Google Scholar 

  33. Wen, Z., Liu, J. & Li, J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 20, 743–747 (2008).

    Article  CAS  Google Scholar 

  34. Liu, S. et al. Fabrication and characterization of well-dispersed and highly stable PtRu nanoparticles on carbon mesoporous material for applications in direct methanol fuel cell. Chem. Mater. 20, 1622–1628 (2008).

    Article  CAS  Google Scholar 

  35. Orilall, M. C. et al. One-pot synthesis of platinum-based nanoparticles incorporated into mesoporous niobium oxide-carbon composites for fuel cell electrodes. J. Am. Chem. Soc. 131, 9389–9395 (2009).

    Article  CAS  Google Scholar 

  36. Zhu, Y., Kockrick, E., Kaskel, S., Ikoma, T. & Hanagata, N. Nanocasting route to ordered mesoporous carbon with FePt nanoparticles and its phenol adsorption property. J. Phys. Chem. C 113, 5998–6002 (2009).

    Article  CAS  Google Scholar 

  37. Jun, S. et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc. 122, 10712–10713 (2000).

    Article  CAS  Google Scholar 

  38. Chen, I. Molecular-orbital studies of charge carrier transport in orthorhombic sulfur. I. Molecular orbitals of S8 . Phys. Rev. B 2, 1053–1060 (1970).

    Article  Google Scholar 

  39. Miller, J. T. & Koningsbergery, D. C. The origin of sulfur tolerance in supported platinum catalysts: the relationship between structural and catalytic properties in acidic and alkaline Pt/LTL. J. Catal. 162, 209–219 (1996).

    Article  CAS  Google Scholar 

  40. Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009).

    Article  CAS  Google Scholar 

  41. Zhuravlev, N. N. & Stepanova, A. A. An X-ray investigation of superconducting alloys of bismuth with platinum in the range of 20–640 °C. Sov. Phys.-Crystallogr. 7, 231–242 (1962).

    Google Scholar 

  42. Blasini, D. R. et al. Surface composition of ordered intermetallic compounds PtBi and PtPb. Surf. Sci. 600, 2670–2680 (2006).

    Article  CAS  Google Scholar 

  43. Zhou, W. P. et al. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. J. Phys. Chem. B 110, 13393–13398 (2006).

    Article  CAS  Google Scholar 

  44. Ge, J. et al. Controllable synthesis of Pd nanocatalysts for direct formic acid fuel cell (DFAFC) application: from Pd hollow nanospheres to Pd nanoparticles. J. Phys. Chem. C 111, 17305–17310 (2007).

    Article  CAS  Google Scholar 

  45. Kristian, N., Yanb, Y. & Wang, X. Highly efficient submonolayer Pt-decorated Au nano-catalysts for formic acid oxidation. Chem. Commun. 353–355 (2008).

  46. Xu, J. B., Zhao, T. S. & Liang, Z. X. Synthesis of active platinum–silver alloy electrocatalyst toward the formic acid oxidation reaction. J. Phys. Chem. C 112, 7362–7368 (2008).

    Google Scholar 

  47. Tian, N., Zhou, Z., Sun, S., Ding, Y. & Wang, Z. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316, 732–735 (2007).

    Article  CAS  Google Scholar 

  48. Rigsby, M. A. et al. Experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru. J. Phys. Chem. C 112, 15595–15601 (2008).

    Article  CAS  Google Scholar 

  49. Huang, Y. et al. Preparation of Pd/C catalyst for formic acid oxidation usinga novel colloid method. Electrochem. Commun. 10, 621–624 (2008).

    Article  CAS  Google Scholar 

  50. Yu, X. & Pickup, P. G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 182, 124–132 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L.F.N. gratefully acknowledges the financial support of the National Science and Engineering Research Council (NSERC, Canada) through its Discovery Grant and Canada Research Chair programs. We thank R. Sodhi at Surface Interface Ontario, University of Toronto, for acquisition and processing of the XPS spectra and C. Mims for helpful discussions, N. Coombs at the Centre for Nanostructured Imaging, University of Toronto, for help with acquisition of the STEM imaging, and C. Andrei (McMaster University, Canadian Centre for Electron Microscopy) for help with the high-resolution imaging work. The experimental work on the FEI Titan 80–300 and FEI Titan 80–300 Cubed was carried out at the Canadian Centre for Electron Microscopy, a user facility supported by NSERC and McMaster University.

Author information

Authors and Affiliations

Authors

Contributions

X.J. and L.N. designed and conducted the research. Electrochemical experiments were performed by X.J., L.Z., and J.Z. K.L. and R.H. contributed analysis. TEM experiments were performed by G.B. and M.C. L.N. and X.J. wrote the paper.

Corresponding author

Correspondence to Linda F. Nazar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 4852 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, X., Lee, K., Holden, R. et al. Nanocrystalline intermetallics on mesoporous carbon for direct formic acid fuel cell anodes. Nature Chem 2, 286–293 (2010). https://doi.org/10.1038/nchem.553

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.553

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing