Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation

Abstract

α-Synuclein (α-syn) is a 140-residue intrinsically disordered protein that is involved in neuronal and synaptic vesicle plasticity, but its aggregation to form amyloid fibrils is the hallmark of Parkinson's disease (PD). The interaction between α-syn and lipid surfaces is believed to be a key feature for mediation of its normal function, but under other circumstances it is able to modulate amyloid fibril formation. Using a combination of experimental and theoretical approaches, we identify the mechanism through which facile aggregation of α-syn is induced under conditions where it binds a lipid bilayer, and we show that the rate of primary nucleation can be enhanced by three orders of magnitude or more under such conditions. These results reveal the key role that membrane interactions can have in triggering conversion of α-syn from its soluble state to the aggregated state that is associated with neurodegeneration and to its associated disease states.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modulation of the kinetics of α-synuclein amyloid formation by lipid vesicles.
Figure 2: Dissolution of α-syn fibrils in the presence of an excess of DMPS SUVs.
Figure 3: Effect of the presence of salts on the binding of α-syn to DMPS SUVs and on its kinetics of amyloid formation.
Figure 4: Effect of the variation of the concentration of DMPS SUVs and free monomeric α-syn on the kinetics of α-syn amyloid formation.
Figure 5: Differences in the morphology of α-syn aggregates formed in the presence and absence of DMPS SUVs.
Figure 6: Global kinetic analysis of α-syn aggregation data with a two-step nucleation model.

Similar content being viewed by others

References

  1. Bellucci, A., Navarria, L., Zaltieri, M., Missale, C. & Spano, P. α-Synuclein synaptic pathology and its implications in the development of novel therapeutic approaches to cure Parkinson's disease. Brain Res. 1432, 95–113 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. Bellucci, A. et al. From α-synuclein to synaptic dysfunctions: new insights into the pathophysiology of Parkinson's disease. Brain Res. 1476, 183–202 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Chiti, F. & Dobson, C.M. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75, 333–366 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Dobson, C.M. Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329–332 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Knowles, T.P., Vendruscolo, M. & Dobson, C.M. The amyloid state and its association with protein misfolding diseases. Nat. Rev. Mol. Cell Biol. 15, 384–396 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Spillantini, M.G. & Goedert, M. The α-synucleinopathies: Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Ann. NY Acad. Sci. 920, 16–27 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Spillantini, M.G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Bodner, C.R., Dobson, C.M. & Bax, A. Multiple tight phospholipid-binding modes of α-synuclein revealed by solution NMR spectroscopy. J. Mol. Biol. 390, 775–790 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davidson, W.S., Jonas, A., Clayton, D.F. & George, J.M. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. J. Biol. Chem. 273, 9443–9449 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Fusco, G. et al. Direct observation of the three regions in α-synuclein that determine its membrane-bound behaviour. Nat. Commun. 5, 3827 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Middleton, E.R. & Rhoades, E. Effects of curvature and composition on α-synuclein binding to lipid vesicles. Biophys. J. 99, 2279–2288 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ouberai, M.M. et al. α-Synuclein senses lipid packing defects and induces lateral expansion of lipids leading to membrane remodeling. J. Biol. Chem. 288, 20883–20895 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shvadchak, V.V., Yushchenko, D.A., Pievo, R. & Jovin, T.M. The mode of α-synuclein binding to membranes depends on lipid composition and lipid to protein ratio. FEBS Lett. 585, 3513–3519 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Trexler, A.J. & Rhoades, E. α-Synuclein binds large unilamellar vesicles as an extended helix. Biochemistry 48, 2304–2306 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Abeliovich, A. et al. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25, 239–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Clayton, D.F. & George, J.M. The synucleins: a family of proteins involved in synaptic function, plasticity, neurodegeneration and disease. Trends Neurosci. 21, 249–254 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Fortin, D.L., Nemani, V.M., Nakamura, K. & Edwards, R.H. The behavior of α-synuclein in neurons. Mov. Disord. 25 (suppl. 1): S21–S26 (2010).

    Article  PubMed  Google Scholar 

  18. Gureviciene, I., Gurevicius, K. & Tanila, H. Role of α-synuclein in synaptic glutamate release. Neurobiol. Dis. 28, 83–89 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Nemani, V.M. et al. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65, 66–79 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Auluck, P.K., Caraveo, G. & Lindquist, S. α-Synuclein: membrane interactions and toxicity in Parkinson′s disease. Annu. Rev. Cell Dev. Biol. 26, 211–233 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Butterfield, S.M. & Lashuel, H.A. Amyloidogenic protein-membrane interactions: mechanistic insight from model systems. Angew. Chem. Int. Edn Engl. 49, 5628–5654 (2010).

    Article  CAS  Google Scholar 

  22. Fink, A.L. The aggregation and fibrillation of α-synuclein. Acc. Chem. Res. 39, 628–634 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Giehm, L., Svergun, D.I., Otzen, D.E. & Vestergaard, B. Low-resolution structure of a vesicle disrupting α-synuclein oligomer that accumulates during fibrillation. Proc. Natl. Acad. Sci. USA 108, 3246–3251 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Martinez, Z., Zhu, M., Han, S. & Fink, A.L. GM1 specifically interacts with α-synuclein and inhibits fibrillation. Biochemistry 46, 1868–1877 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Zhu, M. & Fink, A.L. Lipid binding inhibits α-synuclein fibril formation. J. Biol. Chem. 278, 16873–16877 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Hellstrand, E., Nowacka, A., Topgaard, D., Linse, S. & Sparr, E. Membrane lipid co-aggregation with α-synuclein fibrils. PLoS ONE 8, e77235 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cohen, S.I., Vendruscolo, M., Dobson, C.M. & Knowles, T.P. From macroscopic measurements to microscopic mechanisms of protein aggregation. J. Mol. Biol. 421, 160–171 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Cohen, S.I. et al. Nucleated polymerization with secondary pathways. I. Time evolution of the principal moments. J. Chem. Phys. 135, 065105 (2011).

    Article  PubMed  CAS  Google Scholar 

  29. Knowles, T.P. et al. An analytical solution to the kinetics of breakable filament assembly. Science 326, 1533–1537 (2009).

    Article  CAS  PubMed  Google Scholar 

  30. Takamori, S. et al. Molecular anatomy of a trafficking organelle. Cell 127, 831–846 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Dedmon, M.M., Lindorff-Larsen, K., Christodoulou, J., Vendruscolo, M. & Dobson, C.M. Mapping long-range interactions in α-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J. Am. Chem. Soc. 127, 476–477 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Zhu, M., Li, J. & Fink, A.L. The association of α-synuclein with membranes affects bilayer structure, stability, and fibril formation. J. Biol. Chem. 278, 40186–40197 (2003).

    Article  CAS  PubMed  Google Scholar 

  33. Cabaleiro-Lago, C., Quinlan-Pluck, F., Lynch, I., Dawson, K.A. & Linse, S. Dual effect of amino modified polystyrene nanoparticles on amyloid β protein fibrillation. ACS Chem Neurosci 1, 279–287 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lentz, B.R. Use of fluorescent probes to monitor molecular order and motions within liposome bilayers. Chem. Phys. Lipids 64, 99–116 (1993).

    Article  CAS  PubMed  Google Scholar 

  35. Nuscher, B. et al. α-Synuclein has a high affinity for packing defects in a bilayer membrane: a thermodynamics study. J. Biol. Chem. 279, 21966–21975 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Buell, A.K. et al. Solution conditions determine the relative importance of nucleation and growth processes in α-synuclein aggregation. Proc. Natl. Acad. Sci. USA 111, 7671–7676 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen, S.I. et al. Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism. Proc. Natl. Acad. Sci. USA 110, 9758–9763 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meisl, G. et al. Differences in nucleation behavior underlie the contrasting aggregation kinetics of the Aβ40 and Aβ42 peptides. Proc. Natl. Acad. Sci. USA 111, 9384–9389 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ferrone, F. Analysis of protein aggregation kinetics. Methods Enzymol. 309, 256–274 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Ferrone, F.A., Hofrichter, J. & Eaton, W.A. Kinetics of sickle hemoglobin polymerization. II. A double nucleation mechanism. J. Mol. Biol. 183, 611–631 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Oosawa, F. & Kasai, M. A theory of linear and helical aggregations of macromolecules. J. Mol. Biol. 4, 10–21 (1962).

    Article  CAS  PubMed  Google Scholar 

  42. Xue, W.F., Homans, S.W. & Radford, S.E. Systematic analysis of nucleation-dependent polymerization reveals new insights into the mechanism of amyloid self-assembly. Proc. Natl. Acad. Sci. USA 105, 8926–8931 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Campioni, S. et al. The presence of an air-water interface affects formation and elongation of α-synuclein fibrils. J. Am. Chem. Soc. 136, 2866–2875 (2014).

    Article  CAS  PubMed  Google Scholar 

  44. Giehm, L., Lorenzen, N. & Otzen, D.E. Assays for α-synuclein aggregation. Methods 53, 295–305 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Giehm, L. & Otzen, D.E. Strategies to increase the reproducibility of protein fibrillization in plate reader assays. Anal. Biochem. 400, 270–281 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Oosawa, F. Thermodynamics of the Polymerization of Protein (Academic Press, 1975).

  47. Cremades, N. et al. Direct observation of the interconversion of normal and toxic forms of α-synuclein. Cell 149, 1048–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bishop, M.F. & Ferrone, F.A. Kinetics of nucleation-controlled polymerization. A perturbation treatment for use with a secondary pathway. Biophys. J. 46, 631–644 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilhelm, B.G. et al. Composition of isolated synaptic boutons reveals the amounts of vesicle trafficking proteins. Science 344, 1023–1028 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Ciryam, P., Tartaglia, G.G., Morimoto, R.I., Dobson, C.M. & Vendruscolo, M. Widespread aggregation and neurodegenerative diseases are associated with supersaturated proteins. Cell Rep. 5, 781–790 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Hoyer, W. et al. Dependence of α-synuclein aggregate morphology on solution conditions. J. Mol. Biol. 322, 383–393 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Petrache, H.I. et al. Structure and fluctuations of charged phosphatidylserine bilayers in the absence of salt. Biophys. J. 86, 1574–1586 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Baldwin, A.J. et al. Metastability of native proteins and the phenomenon of amyloid formation. J. Am. Chem. Soc. 133, 14160–14163 (2011).

    Article  CAS  PubMed  Google Scholar 

  54. Weinreb, P.H., Zhen, W., Poon, A.W., Conway, K.A. & Lansbury, P.T. Jr. NACP, a protein implicated in Alzheimer′s disease and learning, is natively unfolded. Biochemistry 35, 13709–13715 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Buell, A.K. et al. Frequency factors in a landscape model of filamentous protein aggregation. Phys. Rev. Lett. 104, 228101 (2010).

    Article  PubMed  CAS  Google Scholar 

  56. Wales, D.J. & Doye, J.P.K. Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997).

    Article  CAS  Google Scholar 

  57. Smith, J.F., Knowles, T.P., Dobson, C.M., Macphee, C.E. & Welland, M.E. Characterization of the nanoscale properties of individual amyloid fibrils. Proc. Natl. Acad. Sci. USA 103, 15806–15811 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank M. Ouberai for her help with the preparation of SUVs and for valuable discussions along with C. Waudby and J. Christodoulou. This work was supported by the UK Biotechnology and Biochemical Sciences Research Council (BB/H003843/1 to C.M.D. and M.V.); the Wellcome Trust (094425/Z/10/Z to C.M.D., T.P.J.K. and M.V.); the European Research Council (337969, T.P.J.K.); the Frances and Augustus Newman Foundation (T.P.J.K.); Magdalene College, Cambridge (A.K.B.); St John's College, Cambridge (T.C.T.M.); the Cambridge Home and EU Scholarship Scheme (G.M.); Elan Pharmaceuticals (C.M.D., T.P.J.K., M.V., C.G. and A.K.B.) and the Leverhulme Trust (A.K.B.).

Author information

Authors and Affiliations

Authors

Contributions

C.G. performed the experiments and A.K.B. recorded the AFM images. C.G., A.K.B., T.P.J.K., M.V. and C.M.D. were involved in the design of the study. C.G., A.K.B., G.M. and C.M.D. wrote the paper, and all the authors were involved in the analysis of the data and editing of the paper.

Corresponding author

Correspondence to Christopher M Dobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–6. (PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvagnion, C., Buell, A., Meisl, G. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat Chem Biol 11, 229–234 (2015). https://doi.org/10.1038/nchembio.1750

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1750

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing