Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optogenetic control of kinetochore function

Abstract

Kinetochores act as hubs for multiple activities during cell division, including microtubule interactions and spindle checkpoint signaling. Each kinetochore can act autonomously, and activities change rapidly as proteins are recruited to, or removed from, kinetochores. Understanding this dynamic system requires tools that can manipulate kinetochores on biologically relevant temporal and spatial scales. Optogenetic approaches have the potential to provide temporal and spatial control with molecular specificity. Here we report new chemical inducers of protein dimerization that allow us to both recruit proteins to and release them from kinetochores using light. We use these dimerizers to manipulate checkpoint signaling and molecular motor activity. Our findings demonstrate specialized properties of the CENP-E (kinesin-7) motor for directional chromosome transport to the spindle equator and for maintenance of metaphase alignment. This work establishes a foundation for optogenetic control of kinetochore function, which is broadly applicable to experimental probing of other dynamic cellular processes.

This is a preview of subscription content, access via your institution

Access options

Figure 1: New dimerizers based on a modular design.
Figure 2: Activating and silencing the spindle checkpoint.
Figure 3: Kinesin-1 transports chromosomes in all directions from the pole.
Figure 4: CENP-E transports chromosomes from the pole to the equator.
Figure 5: CENP-E stabilizes metaphase alignment.

Similar content being viewed by others

References

  1. Nagpal, H. & Fukagawa, T. Kinetochore assembly and function through the cell cycle. Chromosoma 125, 645–659 (2016).

    CAS  PubMed  Google Scholar 

  2. Pesenti, M.E., Weir, J.R. & Musacchio, A. Progress in the structural and functional characterization of kinetochores. Curr. Opin. Struct. Biol. 37, 152–163 (2016).

    CAS  PubMed  Google Scholar 

  3. Cheeseman, I.M. The kinetochore. Cold Spring Harb. Perspect. Biol. 6, a015826 (2014).

    PubMed  PubMed Central  Google Scholar 

  4. Holland, A.J. & Cleveland, D.W. Losing balance: the origin and impact of aneuploidy in cancer. EMBO Rep. 13, 501–514 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Walczak, C.E., Cai, S. & Khodjakov, A. Mechanisms of chromosome behaviour during mitosis. Nat. Rev. Mol. Cell Biol. 11, 91–102 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Auckland, P. & McAinsh, A.D. Building an integrated model of chromosome congression. J. Cell Sci. 128, 3363–3374 (2015).

    CAS  PubMed  Google Scholar 

  7. Lara-Gonzalez, P., Westhorpe, F.G. & Taylor, S.S. The spindle assembly checkpoint. Curr. Biol. 22, R966–R980 (2012).

    CAS  PubMed  Google Scholar 

  8. London, N. & Biggins, S. Signalling dynamics in the spindle checkpoint response. Nat. Rev. Mol. Cell Biol. 15, 736–747 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Goshima, G. & Vale, R.D. The roles of microtubule-based motor proteins in mitosis: comprehensive RNAi analysis in the Drosophila S2 cell line. J. Cell Biol. 162, 1003–1016 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lampson, M.A. & Kapoor, T.M. Unraveling cell division mechanisms with small-molecule inhibitors. Nat. Chem. Biol. 2, 19–27 (2006).

    CAS  PubMed  Google Scholar 

  11. Magidson, V., Lončarek, J., Hergert, P., Rieder, C.L. & Khodjakov, A. Laser microsurgery in the GFP era: a cell biologist's perspective. Methods Cell Biol. 82, 239–266 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Toettcher, J.E., Voigt, C.A., Weiner, O.D. & Lim, W.A. The promise of optogenetics in cell biology: interrogating molecular circuits in space and time. Nat. Methods 8, 35–38 (2011).

    CAS  PubMed  Google Scholar 

  13. van Bergeijk, P., Adrian, M., Hoogenraad, C.C. & Kapitein, L.C. Optogenetic control of organelle transport and positioning. Nature 518, 111–114 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Jost, A.P.-T. & Weiner, O.D. Probing yeast polarity with acute, reversible, optogenetic inhibition of protein function. ACS Synth. Biol. 4, 1077–1085 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Ballister, E.R., Aonbangkhen, C., Mayo, A.M., Lampson, M.A. & Chenoweth, D.M. Localized light-induced protein dimerization in living cells using a photocaged dimerizer. Nat. Commun. 5, 5475 (2014).

    PubMed  Google Scholar 

  16. Ballister, E.R., Ayloo, S., Chenoweth, D.M., Lampson, M.A. & Holzbaur, E.L.F. Optogenetic control of organelle transport using a photocaged chemical inducer of dimerization. Curr. Biol. 25, R407–R408 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Klán, P. et al. Photoremovable protecting groups in chemistry and biology: reaction mechanisms and efficacy. Chem. Rev. 113, 119–191 (2013).

    PubMed  Google Scholar 

  18. Ballister, E.R., Riegman, M. & Lampson, M.A. Recruitment of Mad1 to metaphase kinetochores is sufficient to reactivate the mitotic checkpoint. J. Cell Biol. 204, 901–908 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kuijt, T.E.F., Omerzu, M., Saurin, A.T. & Kops, G.J.P.L. Conditional targeting of MAD1 to kinetochores is sufficient to reactivate the spindle assembly checkpoint in metaphase. Chromosoma 123, 471–480 (2014).

    PubMed  PubMed Central  Google Scholar 

  20. Kapoor, T.M. et al. Chromosomes can congress to the metaphase plate before biorientation. Science 311, 388–391 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Barisic, M., Aguiar, P., Geley, S. & Maiato, H. Kinetochore motors drive congression of peripheral polar chromosomes by overcoming random arm-ejection forces. Nat. Cell Biol. 16, 1249–1256 (2014).

    CAS  PubMed  Google Scholar 

  22. Wood, K.W. et al. Antitumor activity of an allosteric inhibitor of centromere-associated protein-E. Proc. Natl. Acad. Sci. USA 107, 5839–5844 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cooke, C.A., Schaar, B., Yen, T.J. & Earnshaw, W.C. Localization of CENP-E in the fibrous corona and outer plate of mammalian kinetochores from prometaphase through anaphase. Chromosoma 106, 446–455 (1997).

    CAS  PubMed  Google Scholar 

  24. Shrestha, R.L. & Draviam, V.M. Lateral to end-on conversion of chromosome-microtubule attachment requires kinesins CENP-E and MCAK. Curr. Biol. 23, 1514–1526 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Putkey, F.R. et al. Unstable kinetochore-microtubule capture and chromosomal instability following deletion of CENP-E. Dev. Cell 3, 351–365 (2002).

    CAS  PubMed  Google Scholar 

  26. Gudimchuk, N. et al. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nat. Cell Biol. 15, 1079–1088 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang, X., Jost, A.P.-T., Weiner, O.D. & Tang, C. A light-inducible organelle-targeting system for dynamically activating and inactivating signaling in budding yeast. Mol. Biol. Cell 24, 2419–2430 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Maldonado, M. & Kapoor, T.M. Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat. Cell Biol. 13, 475–482 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barisic, M. et al. Mitosis. Microtubule detyrosination guides chromosomes during mitosis. Science 348, 799–803 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sirajuddin, M., Rice, L.M. & Vale, R.D. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16, 335–344 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Dunn, S. et al. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121, 1085–1095 (2008).

    CAS  PubMed  Google Scholar 

  34. Konishi, Y. & Setou, M. Tubulin tyrosination navigates the kinesin-1 motor domain to axons. Nat. Neurosci. 12, 559–567 (2009).

    CAS  PubMed  Google Scholar 

  35. Hammond, J.W. et al. Posttranslational modifications of tubulin and the polarized transport of kinesin-1 in neurons. Mol. Biol. Cell 21, 572–583 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. McEwen, B.F. et al. CENP-E is essential for reliable bioriented spindle attachment, but chromosome alignment can be achieved via redundant mechanisms in mammalian cells. Mol. Biol. Cell 12, 2776–2789 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Heald, R. & Khodjakov, A. Thirty years of search and capture: The complex simplicity of mitotic spindle assembly. J. Cell Biol. 211, 1103–1111 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lampson, M.A. & Grishchuk, E.L. Mechanisms to avoid and correct erroneous kinetochore-microtubule attachments. Biology (Basel) 6, 1 (2017).

    Google Scholar 

  39. Funabiki, H. & Wynne, D.J. Making an effective switch at the kinetochore by phosphorylation and dephosphorylation. Chromosoma 122, 135–158 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Khandelia, P., Yap, K. & Makeyev, E.V. Streamlined platform for short hairpin RNA interference and transgenesis in cultured mammalian cells. Proc. Natl. Acad. Sci. USA 108, 12799–12804 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yen, T.J., Li, G., Schaar, B.T., Szilak, I. & Cleveland, D.W. CENP-E is a putative kinetochore motor that accumulates just before mitosis. Nature 359, 536–539 (1992).

    CAS  PubMed  Google Scholar 

  42. Liao, H., Li, G. & Yen, T.J. Mitotic regulation of microtubule cross-linking activity of CENP-E kinetochore protein. Science 265, 394–398 (1994).

    CAS  PubMed  Google Scholar 

  43. Ran, F.A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Johnson, V.L., Scott, M.I.F., Holt, S.V., Hussein, D. & Taylor, S.S. Bub1 is required for kinetochore localization of BubR1, Cenp-E, Cenp-F and Mad2, and chromosome congression. J. Cell Sci. 117, 1577–1589 (2004).

    CAS  PubMed  Google Scholar 

  45. Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Furst and J. Gu for NMR assistance; R. Kohli for High-Resolution Mass Spectrometry (HRMS) assistance; A. Calderon and A. Gokden for assistance with molecular cloning and generating cell lines; D. Cleveland (University of California at San Diego) and E. Grishchuk (University of Pennsylvania) for CENP-E plasmids, L. Lavis for dye JF585 (Janelia Research Campus, HHMI); and E. Grishchuk and members of the Lampson lab for helpful discussions. C.A. thanks the Royal Thai Government for PhD fellowship funding through the Development and Promotion of Science and Technology (DPST) Project. This work was supported by the US National Institutes of Health (GM083988 to M.A.L. and GM118510 to D.M.C.) and the US National Institutes of Health, National Cancer Institute (U54-CA193417).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. designed and conducted biological experiments and wrote the manuscript. C.A. synthesized and characterized the dimerizers, conducted experiments in Figure 1 and Supplementary Figures 1 and 2 and edited the manuscript. E.V.T. conducted experiments in Figure 4 and Supplementary Figure 4. E.R.B. contributed to the design of dimerizers and checkpoint experiments. D.M.C. and M.A.L. designed experiments and edited the manuscript.

Corresponding authors

Correspondence to David M Chenoweth or Michael A Lampson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results and Supplementary Figures 1–4 (PDF 11468 kb)

Supplementary Note 1

Details of synthetic schemes and characterization, and supplementary references (PDF 3511 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Aonbangkhen, C., Tarasovetc, E. et al. Optogenetic control of kinetochore function. Nat Chem Biol 13, 1096–1101 (2017). https://doi.org/10.1038/nchembio.2456

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.2456

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing