Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21

Abstract

Chromosome centromeres, composed of repeated DNA sequences, orchestrate the correct segregation of chromatids in cell division. We have examined the centromeres of human chromosomes 13 and 21 by studying the distribution, in situ, of two alpha satellite sequences that differ in a single nucleotide position1. This was possible using padlock probes, oligo-nucleotides that can be ligated into circles upon target recognition2. The segregation of individual 13 and 21 homologues in a family was followed by monitoring of the signals from two differentially labelled probes, specific for either sequence variant. A characteristic arrangement of the repeat motifs in three separate spots, oriented transverse to the length axis of the meta-phase chromosomes and bilaterally symmetric, indicates that only parts of the detected regions are involved in the centromeric region, joining the sister chromatids before anaphase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Jørgensen, A.L., Bostock, C.J. & Bak, A.L. Homologous subfamilies of human alphoid repetitive DNA on different nucleolus organizing chromosomes. Proc. Natl. Acad. Sci. USA 84, 1075–1079 (1987).

    Article  Google Scholar 

  2. Nilsson, M. et al. Padlock probes: circularizing oligonucleotides for localized DNA detection. Science 265, 2085–2088 (1994).

    Article  CAS  Google Scholar 

  3. Fire, A. & Xu, S.-Q. Rolling replication of short DNA circles. Proc. Natl. Acad. Sci. USA 92, 4641–4645 (1995).

    Article  CAS  Google Scholar 

  4. Liu, D., Daubendiek, S.L., Zillman, M.A., Ryan, K. & Kool, E.T. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118, 1587–1594 (1996).

    Article  CAS  Google Scholar 

  5. Landegren, U., Kaiser, R., Sanders, J. & Hood, L. A ligase-mediated gene detection technique. Science 241, 1077–1080 (1988).

    Article  CAS  Google Scholar 

  6. Barany, F. Genetic disease detection and DNA amplification using cloned thermostabile ligase. Proc. Natl. Acad. Sci. USA 88, 189–193 (1991).

    Article  CAS  Google Scholar 

  7. Koch, J., Kølvraa, S., Petersen, K., Gregersen, N. & Bolund, L. Oligonucleotide-priming methods for the chromosome-specific labelling of alpha satellite DNA in situ. Chromosoma 98, 259–265 (1989).

    Article  CAS  Google Scholar 

  8. Koch, J., Hindkjaer, J., Kølvraa, S. & Bolund, L. Construction of a panel of chromosome-specific oligonucleotide probes (PRINS-primers) useful for the identification of individual human chromosomes in situ. Cytogenet. Cell Genet. 71, 142–147 (1995).

    Article  CAS  Google Scholar 

  9. Pellestor, F., Girardet, A., Andreo, B. & Charlieu, J.-P. A polymorphic alpha satellite sequence specific for human chromosome 13 detected by oligonucleotide primed in situ labelling (PRINS). Hum. Genet. 94, 346–348 (1994).

    Article  CAS  Google Scholar 

  10. Pellestor, F., Girardet, A., Genevieve, L., Andreo, B. & Charlieu, J.P. Use of the primed in situ labelling (PRINS) technique for a rapid detection of chromosomes 13, 16, 18, 21, X and Y. Hum. Genet. 95, 12–17 (1995).

    Article  CAS  Google Scholar 

  11. Charlieu, J.-P. et al. Discrimination between alpha satellite DNA sequences from chromosomes 21 and 13 by using polymerase chain reaction. Genomics 14, 515–516 (1992).

    Article  CAS  Google Scholar 

  12. Wevrick, R. & Willard, H.F. Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. Proc. Natl. Acad. Sci. USA 86, 9394–9398 (1989).

    Article  CAS  Google Scholar 

  13. O'Keefe, C.L., Warburton, P.E. & Matera, A.G. Oligonucleotide probes for alpha satellite DNA variants can distinguish homologous chromosomes by FISH. Hum. Mol. Genet. 5, 1793–1799 (1996).

    Article  CAS  Google Scholar 

  14. Trowell, H.E., Nagy, A., Vissel, B. & Choo, K.H.A. Long-range analyses of the centromeric regions of human chromosomes 13, 14 and 21: identification of a narrow domain containing two key centromeric DNA elements. Hum. Mol. Genet. 2, 1639–1649 (1993).

    Article  CAS  Google Scholar 

  15. Finelli, P. et al. Structural organization of multiple alphoid subsets coexisting on human chromosomes 1, 4, 5, 7, 9, 15, 18, and 19. Genomics 38, 325–330 (1996).

    Article  CAS  Google Scholar 

  16. Connolly, B.A. Solid phase 5′-phosphorylation of oligonucleotides. Tetrahedron Lett. 28, 463–466 (1987).

    Article  CAS  Google Scholar 

  17. Sund, C., Ylikosli, J., Hurskainen, P. & Kwiatkowski, M. Construction of europium (Eu3+)-labelled oligo DNA hybridization probes. Nucleosides Nucleotides. 7, 655–659 (1988).

    Article  CAS  Google Scholar 

  18. Kwiatkowski, M., Nilsson, M. & Landegren, U. Synthesis of full-length ligonudeotides: cleavage of apurinic molecules on a novel support. Nucleic Acids Res. 24, 4632–4638 (1996).

    Article  CAS  Google Scholar 

  19. Wu, D.Y. & Wallace, R.B. Specificity of the nick-closing activity of bacteriophage T4 DNA ligase. Gene 76, 245–254 (1989).

    Article  CAS  Google Scholar 

  20. Lou, J., Bergstrom, D.E. & Barany, F. Improving the fidelity of Thermus thermophilus DNA ligase. Nucleic Acids Res. 24, 3071–3078 (1996).

    Article  Google Scholar 

  21. Pinkel, D. et al. Fluorescence in situ hybridization with human chromosome specific libraries: detection of trisomy 21 and translations of chromosome 4. Proc. Natl Acad. Sci. USA 85, 9138–9142 (1988).

    Article  CAS  Google Scholar 

  22. Willard, H.F. & Waye, J.S. Hierarchical order in chromosome-specific human alpha satellite DNA. Trends Genet. 3, 192–198 (1987).

    Article  CAS  Google Scholar 

  23. Greig, G.M., Warburton, P.E. & Willard, H.F. Organization and evolution of an alpha satellite DNA subset shared by human chromosomes 13 and 21. J. Mol. Evol. 37, 464–475 (1993).

    Article  CAS  Google Scholar 

  24. Marcais, B. et al. Structural organization and polymorphism of the alpha satellite DNA sequences of chromosomes 13 and 21 as revealed by pulse field gel electrophoresis. Hum. Genet. 86, 311–316 (1991).

    CAS  PubMed  Google Scholar 

  25. Marcais, B. et al. On the mode of evolution of alpha satellite DNA in human populations. J. Mol. Evol. 33, 42–48 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mats Nilsson or Ulf Landegren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nilsson, M., Krejci, K., Koch, J. et al. Padlock probes reveal single-nucleotide differences, parent of origin and in situ distribution of centromeric sequences in human chromosomes 13 and 21. Nat Genet 16, 252–255 (1997). https://doi.org/10.1038/ng0797-252

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0797-252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing