Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice

A Correction to this article was published on 01 November 1993

Abstract

Overexpression of the gene encoding the β–amyloid precursor protein (APP) may have a key role in the pathogenesis of both Alzheimer's disease (AD) and Down Syndrome (DS). We have therefore introduced a 650 kilobase (kb) yeast artificial chromosome (YAC) that contains the entire, unrearranged 400 kb human APP gene into mouse embryonic stem (ES) cells by lipid–mediated transfection. ES lines were generated that contain a stably integrated, unrearranged human APP gene. Moreover, we demonstrate germ line transmission of the APP YAC in transgenic mice and expression of human APP mRNA and protein at levels comparable to endogenous APP. This transgenic strategy may prove invaluable for the development of mouse models for AD and DS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Giaccone, G. et al. Down patients: extracellular preamyloid deposits precede neuritic degeneration and senile plaques. Neurosci. Lett. 97, 232–238 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Glenner, G.G. & Wong, C.W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem. Biophys. Res. Commun. 120, 885–890 (1984).

    Article  CAS  PubMed  Google Scholar 

  3. Masters, C.L. et al. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc. natn. Acad. Sci. U.S.A. 82, 4245–4249 (1985).

    Article  CAS  Google Scholar 

  4. Masters, C.L. et al. Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer's disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J. 4, 2757–2763 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kemper, T. Neuroanatomical and neuropathological changes in normal aging and in dementia. In Clinical Neurology of Aging (ed. Albert, M.L.) 9–52 (Oxford University Press, New York, 1984).

    Google Scholar 

  6. Selkoe, D.J., Bell, D.S., Podlisny, M.B., Price, D.L. & Cork, L.C. Conservation of brain amyloid proteins in aged mammals and humans with Alzheimer's disease. Science 235, 873–877 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Mann, D.M. & Esiri, M.M. The pattern of acquisition of plaques and tangles in the brains of patients under 50 years of age with Down's syndrome. J. neurol. Sci. 89, 169–179 (1989).

    Article  CAS  PubMed  Google Scholar 

  8. Rumble, B. et al. Amyloid A4 protein and its precursor in Down's syndrome and Alzheimer's disease. New Engl. J. Med. 320, 1446–1452 (1989).

    Article  CAS  PubMed  Google Scholar 

  9. Goldgaber, D., Lerman, M.I., McBride, O.W., Saffiotti, U. & Gajdusek, D.C. Characterization and chromosomal localization of a cDNA encoding brain amyloid of Alzheimer's disease. Science 235, 877–880 (1987).

    Article  CAS  PubMed  Google Scholar 

  10. Kang, J. et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 325, 733–736 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Tanzi, R.E. et al. Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235, 880–884 (1987).

    Article  CAS  PubMed  Google Scholar 

  12. Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H. & Sakaki, Y. Genomic organization of the human amyloid β-protein precursor gene. Gene 87, 257–263 (1990).

    Article  CAS  PubMed  Google Scholar 

  13. Ponte, P. et al. A new A4 amyloid mRNA contains a domain homologous to serine proteinase inhibitors. Nature 331, 525–527 (1988).

    Article  CAS  PubMed  Google Scholar 

  14. Golde, T.E., Estus, S., Usiak, M., Younkin, L.H. & Younkin, S.G. Expression of β amyloid protein precursor mRNAs: recognition of a novel alternatively spliced form and quantitation in Alzheimer's disease using PCR. Neuron 4, 253–267 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. Weidemann, A. et al. Identification, biogenesis, and localization of precursors of Alzheimer's disease A4 amyloid protein. Cell 57, 115–26 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Haass, C., Koo, E.H., Mellon, A., Hung, A.Y. & Selkoe, D.J. Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357, 500–503 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Sisodia, S.S. β-Amyloid precursor protein cleavage by a membrane-bound protease. Proc. natn. Acad. Sci. U.S.A. 89, 6075–6079 (1992).

    Article  CAS  Google Scholar 

  18. Esch, F.S. et al. Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248, 1122–4 (1990).

    Article  CAS  PubMed  Google Scholar 

  19. Sisodia, S.S., Koo, E.H., Beyreuther, K., Unterbeck, A. & Price, D.L. Evidence that β-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248, 492–5 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Anderson, J.P. et al. Exact cleavage site of Alzheimer amyloid precursor in neuronal PC–12 cells. Neurosci. Lett. 128, 126–128 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, R., Meschia, J.F., Cotter, R.J. & Sisodia, S.S. Secretion of the β/A4 amyloid precursor protein. Identification of a cleavage site in cultured mammalian cells. J. biol. Chem. 266, 16960–16964 (1991).

    CAS  PubMed  Google Scholar 

  22. Golde, T.E., Estus, S., Younkin, L.H., Selkoe, D.J. & Younkin, S.G. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255, 728–730 (1992).

    Article  CAS  PubMed  Google Scholar 

  23. Haass, C. et al. Amyloid β-peptide is produced by cultured cells during normal metabolism. Nature 359, 322–325 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Seubert, P. et al. Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids. Nature 359, 325–327 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Shoji, M. et al. Production of the Alzheimer amyloid β protein by normal proteolytic processing. Science 258, 126–129 (1992).

    Article  CAS  PubMed  Google Scholar 

  26. Selkoe, D.J. The molecular pathology of Alzheimer's disease. Neuron 6, 487–498 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Price, D.L., Walker, L.C., Martin, L.J. & Sisodia, S.S. Amyloidosis in aging and Alzheimer's disease. Am. J. Pathol. 141, 767–772 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Sisodia, S.S. & Price, D.L. Amyloidogensis in Alzheimer's disease: basic biology and animal models. Curr. Opin. Neurobiol. 2, 648–652 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Chartier-Harlin, M.C. et al. Early-onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 353, 844–846 (1991).

    Article  CAS  PubMed  Google Scholar 

  30. Goate, A. et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature 349, 704–706 (1991).

    Article  CAS  PubMed  Google Scholar 

  31. Murrell, J., Farlow, M., Ghetti, B. & Benson, M.D. A mutation in the amyloid precursor protein associated with hereditary Alzheimer's disease. Science 254, 97–99 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Naruse, S. et al. Mis-sense mutation val-ile in exon-17 of amyloid precursor protein gene in Japanese familial Alzheimer's disease. Lancet 337, 978–979 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Mullan, M. et al. A pathogenetic mutation for probable Alzheimer's disease in the APP gene at the N-terminus of β-amyloid. Nature Genet. 1, 345–347 (1992).

    Article  CAS  PubMed  Google Scholar 

  34. Levy, E. et al. Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage, Dutch type. Science 248, 1124–1126 (1990).

    Article  CAS  PubMed  Google Scholar 

  35. Van Broeckhoven, C. et al. Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248, 1120–1122 (1990).

    Article  CAS  PubMed  Google Scholar 

  36. Hendriks, L. et al. Presenile dementia and cerebral haemorrhage linked to a mutation at codon 692 of the β-amyloid precursor protein gene. Nature Genet. 1, 218–221 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Kawabata, S., Higgins, G.A. & Gordon, J.W. Amyloid plaques, neurofibrillary tangles and neuronal loss in brains of transgenic mice overexpressing a C-terminal fragment of human amyloid precursor protein. Nature 354, 476–478 (1991). Retracted, Nature 356, 23 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Quon, D. et al. Formation of β-amyloid protein deposits in brains of transgenic mice. Nature 352, 239–41 (1991).

    Article  CAS  PubMed  Google Scholar 

  39. Wirak, D.O. et al. Deposits of amyloid β protein in the central nervous system of transgenic mice. Science 253, 323–325 (1991). Retracted, Science 255, 1445 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Kammesheidt, A. et al. Deposition of β/A4 immunoreactivity and neuronal pathology in transgenic mice expressing the carboxyl-terminal fragment of the Alzheimer amyloid precursor in the brain. Proc. natn. Acad. Sci. U.S.A. 89, 10857–10861 (1992).

    Article  CAS  Google Scholar 

  41. Brinster, R.L., Allen, J.M., Behringer, R.R., Gelinas, R.E. & Palmiter, R.D. Introns increase transcriptional efficiency in transgenic mice. Proc. natn. Acad. Sci. U.S.A. 85, 836–840 (1988).

    Article  CAS  Google Scholar 

  42. Schedl, A., Montoliu, L., Kelsey, G. & Schutz, G. A yeast artificial chromosome covering the tyrosinase gene confers copy number-dependent expression in transgenic mice. Nature 362, 258–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Jakobovits, A. et al. Germ-line transmission and expression of a human-derived yeast artificial chromosome. Nature 362, 255–258 (1993).

    Article  CAS  PubMed  Google Scholar 

  44. Choi, T.K. et al. Transgenic mice containing a human heavy chain immunoglobulin gene fragment cloned in a yeast artificial chromosome. Nature Genet. 4, 117–123 (1993).

    Article  CAS  PubMed  Google Scholar 

  45. Strauss, W.M. et al. Germ-line transmission of a yeast artificial chromosome spanning the murine Col1A1 (a 1 (I)Collagen) locus. Science 259, 1904–1907 (1993).

    Article  CAS  PubMed  Google Scholar 

  46. Chumakov, I. et al. Continuum of overlapping clones spanning the entire human chromosome 21q. Nature 359, 380–387 (1992).

    Article  CAS  PubMed  Google Scholar 

  47. Hieter, P. et al. Yeast artificial chromosomes: promises kept and pending. In Genome Analysis Volume I: Genetic and Physical Mapping (eds Davies, K.E. & Tilghman, S.) 83–120 (Cold Spring Harbor Laboratory Press, New York, 1990).

    Google Scholar 

  48. Jucker, M. et al. Age-associated inclusions in normal and transgenic mouse brain. Science 255, 1443–1445 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Bradley, A. Production and analysis of chimeric mice. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 113–151 (IRL Press, Oxford, 1987).

    Google Scholar 

  50. Robertson, E.J. Embryo-derived stem cell lines. In Teratocarcinomas and Embryonic Stem Cells: A Practical Approach (ed. Robertson, E.J.) 71–112 (IRL Press, Oxford, 1987).

    Google Scholar 

  51. Smith, A.G. et al. Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature 336, 688–690 (1988).

    Article  CAS  PubMed  Google Scholar 

  52. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucl. Acid Res. 16, 1215 (1988).

    Article  CAS  Google Scholar 

  53. Gardiner, K., Laas, W. & Patterson, D. Fractionation of large mammalian DNA restriction fragments using vertical pulsed-field gradient gel electrophoresis. Som. Cell Molec. Genet. 12, 185–195 (1986).

    Article  CAS  Google Scholar 

  54. Anand, R., Villasante, A. & Tyler-Smith, C. Construction of yeast artificial chromosome libraries with large inserts using fractionation by pulsed-field gel electrophoresis. Nucl. Acids Res. 17, 3425–3433 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Davis, R.W. et al. Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol. 65, 404–411 (1980).

    Article  CAS  PubMed  Google Scholar 

  56. Soriano, P., Montgomey, C., Geske, R. & Bradley, A. Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell 64, 693–702 (1991).

    Article  CAS  PubMed  Google Scholar 

  57. Linney, E. & Donerly, S. DNA from F9 PyEC mutants increase expression of heterologous genes in transfected F9 cells. Cell 35, 693–699 (1983).

    Article  CAS  PubMed  Google Scholar 

  58. Lamb, B.T., Satyamoorthy, K., Li, L., Solter, D. & Howe, C.C. CpG methylation of an endogenous retroviral enhancer inhibits transcription factor binding and activity. Gene Exp. 1, 185–196 (1991).

    CAS  Google Scholar 

  59. Connelly, C., McCormick, M.K., Shero, J. & Hieter, P. Polyamines eliminate an extreme size bias against transformation of large yeast artificial chromosome DNA. Genomics 10, 10–16 (1991).

    Article  CAS  PubMed  Google Scholar 

  60. Ito, H., Fukuda, Y., Murata, K. & Kumura, A. Transformation of intact cells treated with alkali cations. J. Bacteriol. 153, 163–168 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Sisodia, S.S., Sollner-Webb, B. & Cleveland, D.W. Specificity of RNA maturation pathways: RNAs transcribed by RNA polymerase III are not substrates for splicing or polyadenylation. Molec. cell. Biol. 7, 3602–3612 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Feinberg, A.P. & Vogelstein, B. A technique for radiolabelling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137, 266–267 (1984).

    Article  CAS  PubMed  Google Scholar 

  63. Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H. & Sakaki, Y. Genomic organization of the human amyloid β-protein precursor gene corrigendum. Gene 102, 291–292 (1991).

    Article  CAS  PubMed  Google Scholar 

  64. Tassone, F., Cheng, S. & Gardiner, K. Analysis of chromosome 21 yeast artificial chromosome (YAC) clones. Am. J. hum. Genet. 51, 1251–1264 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wirak, D.O. et al. Regulatory region of human amyloid precursor protein (APP) gene promotes neuron-specific gene expression in the CNS of transgenic mice. EMBO J. 10, 289–96 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamb, B., Sisodia, S., Lawler, A. et al. Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice. Nat Genet 5, 22–30 (1993). https://doi.org/10.1038/ng0993-22

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0993-22

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing