Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex

Abstract

Mutations in LMAN1 (also called ERGIC-53) result in combined deficiency of factor V and factor VIII (F5F8D), an autosomal recessive bleeding disorder characterized by coordinate reduction of both clotting proteins1. LMAN1 is a mannose-binding type 1 transmembrane protein localized to the endoplasmic reticulum–Golgi intermediate compartment (ERGIC; refs. 2,3), suggesting that F5F8D could result from a defect in secretion of factor V and factor VIII (ref. 4). Correctly folded proteins destined for secretion are packaged in the ER into COPII-coated vesicles5, which subsequently fuse to form the ERGIC. Secretion of certain abundant proteins suggests a default pathway requiring no export signals (bulk flow; refs. 6,7). An alternative mechanism involves selective packaging of secreted proteins with the help of specific cargo receptors8,9,10,11,12,13. The latter model would be consistent with mutations in LMAN1 causing a selective block to export of factor V and factor VIII. But 30% of individuals with F5F8D have normal levels of LMAN1, suggesting that mutations in another gene may also be associated with F5F8D14,15. Here we show that inactivating mutations in MCFD2 cause F5F8D with a phenotype indistinguishable from that caused by mutations in LMAN1. MCFD2 is localized to the ERGIC through a direct, calcium-dependent interaction with LMAN1. These findings suggest that the MCFD2-LMAN1 complex forms a specific cargo receptor for the ER-to-Golgi transport of selected proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pedigrees used for linkage analysis.
Figure 2: Identification of MCFD2 and mutational analysis.
Figure 3: Alignment of the predicted amino-acid sequences of MCFD2 orthologs from other vertebrate and invertebrate species: Homo sapiens, Bos taurus, Mus musculus, Gallus gallus, Xenopus laevis, Danio rerio, Caenorhabditis elegans and Drosophila melanogaster.
Figure 4: Intracellular localization of MCFD2.
Figure 5: MCFD2 interacts with LMAN1.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ginsburg, D. Hemophilia and Other Disorders of Hemostasis. in Emery and Rimoin's Principles and Practice of Medical Genetics vol. II. 1926–1958 (Churchill Livingstone, New York, 2002).

    Google Scholar 

  2. Arar, C. et al. ERGIC-53, a membrane protein of the endoplasmic reticulum-Golgi intermediate compartment, is identical to MR60, an intracellular mannose-specific lectin of myelomonocytic cells. J. Biol. Chem. 270, 3551–3553 (1995).

    Article  CAS  Google Scholar 

  3. Itin, C., Roche, A.C., Monsigny, M. & Hauri, H.P. ERGIC-53 is a functional mannose-selective and calcium-dependent human homologue of leguminous lectins. Mol. Biol. Cell 7, 483–493 (1996).

    Article  CAS  Google Scholar 

  4. Nichols, W.C. et al. Mutations in the ER-Golgi intermediate compartment protein ERGIC-53 cause combined deficiency of coagulation factors V and VIII. Cell 93, 61–70 (1998).

    Article  CAS  Google Scholar 

  5. Schekman, R. & Orci, L. Coat proteins and vesicle budding. Science 271, 1526–1533 (1996).

    Article  CAS  Google Scholar 

  6. Wieland, F.T., Gleason, M.L., Serafini, T.A. & Rothman, J.E. The rate of bulk flow from the endoplasmic reticulum to the cell surface. Cell 50, 289–300 (1987).

    Article  CAS  Google Scholar 

  7. Martinez-Menarguez, J.A., Geuze, H.J., Slot, J.W. & Klumperman, J. Vesicular tubular clusters between the ER and Golgi mediate concentration of soluble secretory proteins by exclusion from COPI-coated vesicles. Cell 98, 81–90 (1999).

    Article  CAS  Google Scholar 

  8. Malkus, P., Jiang, F. & Schekman, R. Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J. Cell Biol. 159, 915–921 (2002).

    Article  CAS  Google Scholar 

  9. Kuehn, M.J., Herrmann, J.M. & Schekman, R. COPII–cargo interactions direct protein sorting into ER-derived transport vesicles. Nature 391, 187–190 (1998).

    Article  CAS  Google Scholar 

  10. Muniz, M., Morsomme, P. & Riezman, H. Protein sorting upon exit from the endoplasmic reticulum. Cell 104, 313–320 (2001).

    Article  CAS  Google Scholar 

  11. Nehls, S. et al. Dynamics and retention of misfolded proteins in native ER membranes. Nat. Cell Biol. 2, 288–295 (2000).

    Article  CAS  Google Scholar 

  12. Springer, S. et al. The p24 proteins are not essential for vesicular transport in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97, 4034–4039 (2000).

    Article  CAS  Google Scholar 

  13. Belden, W.J. & Barlowe, C. Role of Erv29p in collecting soluble secretory proteins into ER-derived transport vesicles. Science 294, 1528–1531 (2001).

    Article  CAS  Google Scholar 

  14. Neerman-Arbez, M. et al. Molecular analysis of the ERGIC-53 gene in 35 families with combined factor V-factor VIII deficiency. Blood 93, 2253–2260 (1999).

    CAS  PubMed  Google Scholar 

  15. Nichols, W.C. et al. ERGIC-53 gene structure and mutation analysis in 19 combined factors V and VIII deficiency families. Blood 93, 2261–2266 (1999).

    CAS  PubMed  Google Scholar 

  16. Fiedler, K. & Simons, K. Characterization of VIP36, an animal lectin homologous to leguminous lectins. J. Cell Sci. 109 (Pt 1), 271–276 (1996).

    PubMed  Google Scholar 

  17. Pipe, S.W., Morris, J.A., Shah, J. & Kaufman, R.J. Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin. J. Biol. Chem. 273, 8537–8544 (1998).

    Article  CAS  Google Scholar 

  18. Hebert, D.N., Foellmer, B. & Helenius, A. Glucose trimming and reglucosylation determine glycoprotein association with calnexin in the endoplasmic reticulum. Cell 81, 425–433 (1995).

    Article  CAS  Google Scholar 

  19. Lander, E.S. & Botstein, D. Homozygosity mapping: a way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

    Article  CAS  Google Scholar 

  20. Nichols, W.C. et al. Linkage of combined factors V and VIII deficiency to chromosome 18q by homozygosity mapping. J. Clin. Invest. 99, 596–601 (1997).

    Article  CAS  Google Scholar 

  21. Kruglyak, L., Daly, M.J. & Lander, E.S. Rapid multipoint linkage analysis of recessive traits in nuclear families, including homozygosity mapping. Am. J. Hum. Genet. 56, 519–527 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Levy, G.G. et al. Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413, 488–494 (2001).

    Article  CAS  Google Scholar 

  23. Deka, N. et al. Repetitive nucleotide sequence insertions into a novel calmodulin-related gene and its processed pseudogene. Gene 71, 123–134 (1988).

    Article  CAS  Google Scholar 

  24. Oeri, J., Matter, M., Isenschmid, H., Hauser, F. & Koller, F. Angeborener mangel an faktor V (parahaemophilie) verbunden mit echter haemophilie A bein zwei brudern. Med. Probl. Paediatr. 1, 575–588 (1954).

    Google Scholar 

  25. Munro, S. & Pelham, H.R. A C-terminal signal prevents secretion of luminal ER proteins. Cell 48, 899–907 (1987).

    Article  CAS  Google Scholar 

  26. Lewis, M.J., Sweet, D.J., & Pelham, H.R. The ERD2 gene determines the specificity of the luminal ER protein retention system. Cell 61, 1359–1363 (1990).

    Article  CAS  Google Scholar 

  27. Semenza, J.C., Hardwick, K.G., Dean, N. & Pelham, H.R. ERD2, a yeast gene required for the receptor-mediated retrieval of luminal ER proteins from the secretory pathway. Cell 61, 1349–1357 (1990).

    Article  CAS  Google Scholar 

  28. Vollenweider, F., Kappeler, F., Itin, C. & Hauri, H.P. Mistargeting of the lectin ERGIC-53 to the endoplasmic reticulum of HeLa cells impairs the secretion of a lysosomal enzyme. J. Cell Biol. 142, 377–389 (1998).

    Article  CAS  Google Scholar 

  29. Sussman, D.J. & Milman, G. Short-term, high-efficiency expression of transfected DNA. Mol. Cell Biol. 4, 1641–1643 (1984).

    Article  CAS  Google Scholar 

  30. Moussalli, M. et al. Mannose-dependent endoplasmic reticulum (ER)-Golgi intermediate compartment-53-mediated ER to Golgi trafficking of coagulation factors V and VIII. J. Biol. Chem. 274, 32539–32542 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Smith for assistance in generating monoclonal antibodies, L. Chang and J. Liu for assistance with the confocal microscope and S.J. Weiss and A. Saltiel for comments on the manuscript. This work was supported in part by grants from the US National Institutes of Health to D.G., W.C.N. and R.J.K. B.Z. is a Judith Graham Pools Postgraduate Fellow of the National Hemophilia Foundation. M.A.C is the recipient of a research fellowship from the Heart and Stroke Foundation of Canada. D.G. and R.J.K. are investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ginsburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Cunningham, M., Nichols, W. et al. Bleeding due to disruption of a cargo-specific ER-to-Golgi transport complex. Nat Genet 34, 220–225 (2003). https://doi.org/10.1038/ng1153

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1153

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing