Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource

Abstract

Schistosoma japonicum causes schistosomiasis in humans and livestock in the Asia-Pacific region. Knowledge of the genome of this parasite should improve understanding of schistosome-host interactions, biomedical aspects of schistosomiasis and invertebrate evolution. We assigned 43,707 expressed sequence tags (ESTs) derived from adult S. japonicum and their eggs to 13,131 gene clusters. Of these, 35% shared no similarity with known genes and 75% had not been reported previously in schistosomes. Notably, S. japonicum encoded mammalian-like receptors for insulin, progesterone, cytokines and neuropeptides, suggesting that host hormones, or endogenous parasite homologs, could orchestrate schistosome development and maturation and that schistosomes modulate anti-parasite immune responses through inhibitors, molecular mimicry and other evasion strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cluster distribution and comparative genomics analysis of the S. japonicum ESTs.
Figure 2: Phylogenetic analysis with neighbor-joining trees.
Figure 3: Isolation and characteristics of full-length cDNA of S. japonicum genes.
Figure 4: Predicted functions of S. japonicum transcripts based on gene ontology.
Figure 5: Analysis by semi-quantitative RT–PCR of differential developmental stage–specific and gender-specific expression trends of representative S. japonicum genes, based on differences in expression identified by random sampling of the ESTs.
Figure 6: Multiple sequence alignments of receptors conserved between S. japonicum and their hosts.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ross, A.G. et al. Schistosomiasis in the People's Republic of China: prospects and challenges for the 21st century. Clin. Microbiol. Rev. 14, 270–295 (2001).

    Article  CAS  Google Scholar 

  2. Holland, P.W. The future of evolutionary developmental biology. Nature 402, C41–C44 (1999).

    Article  CAS  Google Scholar 

  3. Dacks, J.B. & Doolittle, W.F. Reconstructing/deconstructing the earliest eukaryotes: how comparative genomics can help. Cell 107, 419–425 (2001).

    Article  CAS  Google Scholar 

  4. Morand, S. & Muller-Graf, C.D. Muscles or testes? Comparative evidence for sexual competition among dioecious blood parasites (Schistosomatidae) of vertebrates. Parasitology 120, 45–56 (2000).

    Article  Google Scholar 

  5. Boag, P.R., Newton, S.E. & Gasser, R.B. Molecular aspects of sexual development and reproduction in nematodes and schistosomes. Adv. Parasitol. 50, 153–198 (2001).

    Article  CAS  Google Scholar 

  6. Ross, A.G. et al. Schistosomiasis. N. Engl. J. Med. 346, 1212–1220 (2002).

    Article  Google Scholar 

  7. Salzet, M., Capron, A. & Stefano, G.B. Molecular crosstalk in host-parasite relationships: schistosome- and leech-host interactions. Parasitol. Today 16, 536–540 (2000).

    Article  CAS  Google Scholar 

  8. Davies, S.J. et al. Modulation of blood fluke development in the liver by hepatic CD4+ lymphocytes. Science 294, 1358–1361 (2001).

    Article  CAS  Google Scholar 

  9. Johnston, D.A. et al. Genomics and the biology of parasites. Bioessays 21, 131–147 (1999).

    Article  CAS  Google Scholar 

  10. Rubin, G.M. et al. A Drosophila complementary DNA resource. Science 287, 2222–2224 (2000).

    Article  CAS  Google Scholar 

  11. Thornton, J.W. & DeSalle, R. Gene family evolution and homology: genomics meets phylogenetics. Annu. Rev. Genomics Hum. Genet. 1, 41–73 (2000).

    Article  CAS  Google Scholar 

  12. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  13. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  Google Scholar 

  14. Ashburner, M. et al. Gene Ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Article  CAS  Google Scholar 

  15. The Gene Ontology Consortium. Creating the gene ontology resource: design and implementation. Genome Res. 11, 1425–1433 (2001).

  16. Brindley, P.J. et al. Proteolytic degradation of host hemoglobin by schistosomes. Mol. Biochem. Parasitol. 89, 1–9 (1997).

    Article  CAS  Google Scholar 

  17. Halton, D.W. Nutritional adaptations to parasitism within the platyhelminthes. Int. J. Parasitol. 27, 693–704 (1997).

    Article  CAS  Google Scholar 

  18. Camacho, M. & Agnew, A. Glucose uptake rates by Schistosoma mansoni, S. haematobium, and S. bovis adults using a flow in vitro culture system. J. Parasitol. 81, 637–640 (1995).

    Article  CAS  Google Scholar 

  19. Skelly, P.J., Kim, J.W., Cunningham, J. & Shoemaker, C.B. Cloning, characterization, and functional expression of cDNAs encoding glucose transporter proteins from the human parasite Schistosoma mansoni. J. Biol. Chem. 269, 4247–4253 (1994).

    CAS  PubMed  Google Scholar 

  20. Skelly, P.J. & Shoemaker, C.B. Rapid appearance and asymmetric distribution of glucose transporter SGTP4 at the apical surface of intramammalian-stage Schistosoma mansoni. Proc. Natl. Acad. Sci. USA 93, 3642–3646 (1996).

    Article  CAS  Google Scholar 

  21. Bueding, E. & Fisher, J. Metabolic requirements of schistosomes. J. Parasitol. 68, 208–212 (1982).

    Article  CAS  Google Scholar 

  22. Hoffmann, K.F., Johnston, D.A. & Dunne, D.W. Identification of Schistosoma mansoni gender-associated gene transcripts by cDNA microarray profiling. Genome Biol. 3, RESEARCH0041 (2002).

    PubMed  PubMed Central  Google Scholar 

  23. Gorman, M., Kuroda, M.I. & Baker, B.S. Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila. Cell 72, 39–49 (1993).

    Article  CAS  Google Scholar 

  24. Pultz, M.A. & Baker, B.S. The dual role of hermaphrodite in the Drosophila sex determination regulatory hierarchy. Development 121, 99–111 (1995).

    CAS  PubMed  Google Scholar 

  25. Sokol, S.B. & Kuwabara, P.E. Proteolysis in Caenorhabditis elegans sex determination: cleavage of TRA-2A by TRA-3. Genes Dev. 14, 901–906 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuwabara, P.E., Okkema, P.G. & Kimble, J. Germ-line regulation of the Caenorhabditis elegans sex-determining gene tra-2. Dev. Biol. 204, 251–262 (1998).

    Article  CAS  Google Scholar 

  27. Lum, D.H., Kuwabara, P.E., Zarkower, D. & Spence, A.M. Direct protein-protein interaction between the intracellular domain of TRA-2 and the transcription factor TRA-1A modulates feminizing activity in C. elegans. Genes Dev. 14, 3153–3165 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Bostic, J.R. & Strand, M. Molecular cloning of a Schistosoma mansoni protein expressed in the gynecophoral canal of male worms. Mol. Biochem. Parasitol. 79, 79–89 (1996).

    Article  CAS  Google Scholar 

  29. Ravindran, B. Are inflammation and immunological hyperactivity needed for filarial parasite development? Trends Parasitol. 17, 70–73 (2001).

    Article  CAS  Google Scholar 

  30. Amiri, P. et al. Tumour necrosis factor alpha restores granulomas and induces parasite egg-laying in schistosome-infected SCID mice. Nature 356, 604–607 (1992).

    Article  CAS  Google Scholar 

  31. Pearce, E.J. & MacDonald, A.S. The immunobiology of schistosomiasis. Nat. Rev. Immunol. 2, 499–511 (2002).

    Article  CAS  Google Scholar 

  32. Gardner, M.J. et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419, 498–511 (2002).

    Article  CAS  Google Scholar 

  33. Santos, T.M. et al. Analysis of the gene expression profile of Schistosoma mansoni cercariae using the expressed sequence tag approach. Mol. Biochem. Parasitol. 103, 79–97 (1999).

    Article  CAS  Google Scholar 

  34. Li, L. et al. Gene discovery in the apicomplexa as revealed by EST sequencing and assembly of a comparative gene database. Genome Res. 13, 443–454 (2003).

    Article  Google Scholar 

  35. Blair, J.E., Ikeo, K., Gojobori, T. & Hedges, S.B. The evolutionary position of nematodes. BMC Evol. Biol. 2, 7 (2002).

    Article  Google Scholar 

  36. Adoutte, A. et al. The new animal phylogeny: reliability and implications. Proc. Natl. Acad. Sci. USA 97, 4453–4456 (2000).

    Article  CAS  Google Scholar 

  37. Le, T.H., Blair, D. & McManus, D.P. Mitochondrial genomes of parasitic flatworms. Trends Parasitol. 18, 206–213 (2002).

    Article  CAS  Google Scholar 

  38. Rubin, G.M. et al. Comparative genomics of the eukaryotes. Science 287, 2204–2215 (2000).

    Article  CAS  Google Scholar 

  39. Li, W.H., Gu, Z., Wang, H. & Nekrutenko, A. Evolutionary analyses of the human genome. Nature 409, 847–849 (2001).

    Article  CAS  Google Scholar 

  40. Lipman, D.J., Souvorov, A., Koonin, E.V., Panchenko, A.R. & Tatusova, T.A. The relationship of protein conservation and sequence length. BMC Evol. Biol. 2, 20 (2002).

    Article  Google Scholar 

  41. de Mendonca, R.L., Escriva, H., Bouton, D., Laudet, V. & Pierce, R.J. Hormones and nuclear receptors in schistosome development. Parasitol. Today 16, 233–240 (2000).

    Article  CAS  Google Scholar 

  42. Imase, A., Kobayashi, K., Ohmae, H., Matsuda, H. & Iwamura, Y. Horizontal and vertical transmission of mouse class I MHC sequence in Schistosoma mansoni. Parasitology 123, 163–168 (2001).

    Article  CAS  Google Scholar 

  43. Xu, X.R. et al. Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver. Proc. Natl. Acad. Sci. USA 98, 15089–15094 (2001).

    Article  CAS  Google Scholar 

  44. Kumar, S., Tamura, K., Jakobsen, I.B. & Nei M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245 (2001).

    Article  CAS  Google Scholar 

  45. Mei, H. & LoVerde, P.T. Schistosoma mansoni: the developmental regulation and immunolocalization of antioxidant enzymes. Exp. Parasitol. 86, 69–78 (1997).

    Article  CAS  Google Scholar 

  46. Audic, S. & Claverie, J.M. The significance of digital gene expression profiles. Genome Res. 7, 986–995 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Chinese High-Tech Research and Development Program, Chinese National Key Program on Basic Research, National Foundation for Excellence Doctoral Project, National Natural Science Foundation of China, Shanghai Commission for Science and Technology, and National Institute of Allergy and Infectious Diseases, National Institutes of Health, USA, supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-Guang Han.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, W., Yan, Q., Shen, DK. et al. Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Nat Genet 35, 139–147 (2003). https://doi.org/10.1038/ng1236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing