Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural reactivation in plate tectonics controlled by olivine crystal anisotropy

Abstract

Reactivation of structures inherited from previous collisional or rifting events, especially lithospheric-scale faults, is a major feature of plate tectonics. Its expression ranges from continental break-up along ancient collisional belts1,2 to linear arrays of intraplate magmatism and seismicity3,4. Here we use multiscale numerical models to show that this reactivation can result from an anisotropic mechanical behaviour of the lithospheric mantle due to an inherited preferred orientation of olivine crystals. We explicitly consider an evolving anisotropic viscosity controlled by the orientation of olivine crystals in the mantle. We find that strain is localized in domains where shear stresses on the inherited mantle fabric are high, and that this leads to shearing parallel to the inherited fabric. During rifting, structural reactivation induced by anisotropy results in oblique extension, followed by either normal extension or failure. Our results suggest that anisotropic viscosity in the lithospheric mantle controls the location and orientation of intraplate deformation zones that may evolve into new plate boundaries, and causes long-lived lithospheric-scale wrench faults, contributing to the toroidal component of plate motions on Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geometry, boundary conditions and shear-strain ɛx y distribution in a model with an ’inherited shear zone’ at 45 of the imposed extension direction after a total stretching of 40%.
Figure 2: Evolution of strain rates in the inherited texture zone (thick lines) and in the surroundings (thin lines) as a function of the imposed extension.
Figure 3: Poloidal–toroidal partitioning in the models.

Similar content being viewed by others

References

  1. Wilson, J. T. Did the Atlantic close and then re-open? Nature 211, 676–681 (1966).

    Article  Google Scholar 

  2. Vauchez, A., Barruol, G. & Tommasi, A. Why do continents break up parallel to ancient orogenic belts? Terra Nova 9, 62–66 (1997).

    Article  Google Scholar 

  3. Sykes, L. R. Intraplate seismicity, reactivation of preexisting zones of weakness, alkaline magmatism, and other tectonism postdating continental fragmentation. Rev. Geophys. Space Phys. 13, 621–688 (1978).

    Article  Google Scholar 

  4. Zoback, M. D. et al. Recurrent intraplate tectonism in the New Madrid Seismic Zone. Science 209, 971–976 (1980).

    Article  Google Scholar 

  5. Durham, W. B. & Goetze, G. Plastic flow of oriented single crystals of olivine. 1. Mechanical data. J. Geophys. Res. 82, 5737–5753 (1977).

    Article  Google Scholar 

  6. Bai, Q., Mackwell, S. J. & Kohlstedt, D. L. High-temperature creep of olivine single crystals. 1. Mechanical results for buffered samples. J. Geophys. Res. 96, 2441–2463 (1991).

    Article  Google Scholar 

  7. Tommasi, A., Mainprice, D., Canova, G. & Chastel, Y. Viscoplastic self-consistent and equilibrium-based modelling of olivine lattice preferred orientations. Implications for upper mantle seismic anisotropy. J. Geophys. Res. 105, 7893–7908 (2000).

    Article  Google Scholar 

  8. Wuestefeld, A., Barruol, G. & Bokelmann, G. Shear-wave splitting database; available at <http://www.gm.univ-montp2.fr/splitting/>.

  9. Hill, R. A theory of yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A 193, 281–297 (1948).

    Google Scholar 

  10. Christensen, U. Some geodynamical effects of anisotropic viscosity. Geophys. J. R. Astron. Soc. 91, 711–736 (1987).

    Article  Google Scholar 

  11. Honda, S. Strong anisotropic flow in a finely layered asthenosphere. Geophys. Res. Lett. 128, 1454–1457 (1986).

    Article  Google Scholar 

  12. Lev, E. & Hager, B. H. Rayleigh–Taylor instabilities with anisotropic lithospheric viscosity. Geophys. J. Int. 173, 806–814 (2008).

    Article  Google Scholar 

  13. Tommasi, A. & Vauchez, A. Continental rifting parallel to ancient collisional belts: An effect of the mechanical anisotropy of the lithospheric mantle. Earth Planet. Sci. Lett. 185, 199–210 (2001).

    Article  Google Scholar 

  14. Lebensohn, R. A. & Tomé, C. N. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconion alloys. Acta Metall. Mater. 41, 2611–2624 (1993).

    Article  Google Scholar 

  15. Tommasi, A., Tikoff, B. & Vauchez, A. Upper mantle tectonics: Three-dimensional deformation, olivine crystallographic fabrics and seismic properties. Earth Planet. Sci. Lett. 168, 173–186 (1999).

    Article  Google Scholar 

  16. Vauchez, A. & Tommasi, A. in Intraplate Strike-Slip Deformation Belts (eds Storti, F., Holdsworth, R. E. & Salvini, F.) 15–24 (Special Publication, Vol. 210, Geological Society of London, 2003).

    Google Scholar 

  17. Vauchez, A. & Nicolas, A. Mountain building: Strike-parallel displacements and mantle anisotropy. Tectonophysics 185, 183–201 (1991).

    Article  Google Scholar 

  18. Braun, J. et al. A simple parameterization of strain localization in the ductile regime. J. Geophys. Res. 104, 25167–25181 (1999).

    Article  Google Scholar 

  19. Regenauer-Lieb, K. & Yuen, D. A. Positive feedback of interacting ductile faults from coupling of equation of state, rheology and thermal-mechanics. Phys. Earth Planet. Int. 142, 113–135 (2004).

    Article  Google Scholar 

  20. Bercovici, D. & Ricard, Y. Tectonic plate generation and two-phase damage: Void growth versus grain size reduction. J. Geophys. Res. 110, B03401 (2005).

    Article  Google Scholar 

  21. Montési, L. G. J. & Zuber, M. T. A unified description of localization for application to large-scale tectonics. J. Geophys. Res. 107, 2045 (2002).

    Article  Google Scholar 

  22. Bosworth, W. & Strecker, M. R. Stress field changes in the Afro-Arabian rift system during the Miocene to Recent period. Tectonophysics 278, 47–62 (1997).

    Article  Google Scholar 

  23. Geoffroy, L., Bergerat, F. & Angelier, J. Tectonic evolution of the Greenland–Scotland Ridge during the Paleogene; new constraints. Geology 22, 653–656 (1994).

    Article  Google Scholar 

  24. Schumacher, M. E. Upper Rhine Graben: Role of preexisting structures during rift evolution. Tectonics 21, 1–17 (2002).

    Article  Google Scholar 

  25. Powell, C. M. A., Roots, S. R. & Veewers, J. J. Pre-breakup continental extension in East Gondwanaland and the early opening of the eastern Indian Ocean. Tectonophysics 155, 261–283 (1988).

    Article  Google Scholar 

  26. Keppie, J. D. in Terranes in the Circum-Atlantic Paleozoic Orogens (ed. Dallmeyer, R. D.) 159–192 (Special Paper, Vol. 230, Geological Society of America, 1989).

    Book  Google Scholar 

  27. Herrmann, R. B. & Canas, J.-A. Focal mechanism studies in the New Madrid seismic zone. Bull. Seismol. Soc. Am. 68, 1095–1102 (1978).

    Google Scholar 

  28. Mazabraud, Y., Bethoux, N., Guilbert, J. & Bellier, O. Evidence for short-scale stress field variations within intraplate central-western France. Geophys. J. Int. 160, 161–178 (2005).

    Article  Google Scholar 

  29. Barruol, G., Silver, P. G. & Vauchez, A. Seismic anisotropy in the eastern United States: Deep structure of a complex continental plate. J. Geophys. Res. 102, 8329–8348 (1997).

    Article  Google Scholar 

  30. Judenherc, S., Granet, M., Brun, J.-P. & Poupinet, G. The Hercynian collision in the Armorican Massif; evidence of different lithospheric domains inferred from seismic tomography and anisotropy. Bull. Soc. Geol. Fr. 174, 45–57 (2003).

    Article  Google Scholar 

  31. Lithgow-Bertelloni, C., Richards, M., Ricard, Y., O’Connell, R. J. & Engebretson, D. C. Toroidal–poloidal partitioning of plate motions since 120 Ma. Geophys. Res. Lett. 20, 375–378 (1993).

    Article  Google Scholar 

  32. Bernacki, M., Chastel, Y., Coupez, T. & Logé, R. Level set framework for the numerical modelling of primary recrystallization in polycrystalline materials. Scripta Mater. 58, 1129–1132 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially funded by the programme Action Marges of the Institut National des Sciences de l’Univers, Centre National de la Recherche Scientifique (INSU-CNRS), France. Collaboration with J.S. was supported by a CNRS-CONICET cooperation program. M.K. benefited from a PhD scholarship from the Ministère de la Recherche et de l’Enseignement Supérieur, France.

Author information

Authors and Affiliations

Authors

Contributions

This work is the outcome of a study on the effect of olivine fabrics on the mechanical behaviour of the continental lithosphere started by A.V. and A.T. M.K. ran all simulations as part of his Ph.D. under the supervision of A.T. and R.L. J.W.S. performed the coupling between the VPSC and the FEM codes. C.T. assisted in the analysis of the modelled flow fields.

Corresponding author

Correspondence to Andréa Tommasi.

Supplementary information

Supplementary Fig. S1

Supplementary Information (PDF 697 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tommasi, A., Knoll, M., Vauchez, A. et al. Structural reactivation in plate tectonics controlled by olivine crystal anisotropy. Nature Geosci 2, 423–427 (2009). https://doi.org/10.1038/ngeo528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing