Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

India–Asia convergence driven by the subduction of the Greater Indian continent

Abstract

The most spectacular example of a plate convergence event on Earth is the motion of the Indian plate towards Eurasia at speeds in excess of 18 cm yr−1 (ref. 1), and the subsequent collision. Continental buoyancy usually stalls subduction shortly after collision, as is seen in most sections of the Alpine–Himalayan chain. However, in the Indian section of this chain, plate velocities were merely reduced by a factor of about three when the Indian continental margin impinged on the Eurasian trench about 50 million years ago. Plate convergence, accompanied by Eurasian indentation, persisted throughout the Cenozoic era1,2,3, suggesting that the driving forces of convergence did not vanish on continental collision. Here we estimate the density of the Greater Indian continent, after its upper crust is scraped off at the Himalayan front, and find that the continental plate is readily subductable. Using numerical models, we show that subduction of such a dense continent reduces convergence by a factor similar to that observed. In addition, an imbalance between ridge push and slab pull can develop and cause trench advance and indentation. We conclude that the subduction of the dense Indian continental slab provides a significant driving force for the current India–Asia convergence and explains the documented evolution of plate velocities following continental collision.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of the numerical subduction models.
Figure 2: Velocities of numerical subduction models.
Figure 3: Comparison of model velocities and India–Asia plate motions.

Similar content being viewed by others

References

  1. Patriat, P. & Achache, J. India–Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. Nature 311, 615–621 (1984).

    Article  Google Scholar 

  2. DeCelles, P. G. et al. Stratigraphy, structure, and tectonic evolution of the Himalayan fold-thrust belt in western Nepal. Tectonics 20, 487–509 (2001).

    Article  Google Scholar 

  3. Guillot, S. et al. Reconstructing the total shortening history of the NW Himalaya. Geochem. Geophys. Geosyst. 4, 1064 (2003).

    Article  Google Scholar 

  4. Ni, J. & Barazangi, M. Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalaya. J. Geophys. Res. 89, 1147–1164 (1984).

    Article  Google Scholar 

  5. Powell, C. M. A. & Conaghan, P. J. Plate Tectonics and Himalayas. Earth Planet. Sci. Lett. 20, 1–12 (1973).

    Article  Google Scholar 

  6. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  7. Van der Voo, R., Spakman, W. & Bijwaard, H. Tethyan subducted slabs under India. Earth Planet. Sci. Lett. 171, 7–20 (1999).

    Article  Google Scholar 

  8. Replumaz, A., Kárason, H., van der Hilst, R. D., Besse, J. & Tapponnier, P. 4-D evolution of SE Asia’s mantle from geological reconstructions and seismic tomography. Earth Planet. Sci. Lett. 221, 103–115 (2004).

    Article  Google Scholar 

  9. Chemenda, A. I., Burg, J. P. & Mattauer, M. Evolutionary model of the Himalaya–Tibet system: Geopoem based on new modelling, geological and geophysical data. Earth Planet. Sci. Lett. 174, 397–409 (2000).

    Article  Google Scholar 

  10. Li, C., van der Hilst, R. D., Meltzer, A. S. & Engdahl, E. R. Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett. 274, 157–168 (2008).

    Article  Google Scholar 

  11. Gaetani, M. & Garzanti, E. Multiciclic history of the Northern Indian Continental-Margin (Northwestern Himalaya). Am. Ass. Petrol. Geol. Bull. 75, 1427–1446 (1991).

    Google Scholar 

  12. Corfield, R. I., Watts, A. B. & Searle, M. P. Subsidence history of the north Indian continental margin, Zanskar–Ladakh Himalaya, NW India. J. Geol. Soc. Lond. 162, 135–146 (2005).

    Article  Google Scholar 

  13. Kosarev, G. et al. Seismic evidence for a detached Indian lithospheric mantle beneath Tibet. Science 283, 1306–1309 (1999).

    Article  Google Scholar 

  14. Le Pichon, X., Fournier, M. & Jolivet, L. Kinematics, topography, shortening, and extrusion in the India–Asia collision. Tectonics 11, 1085–1098 (1992).

    Article  Google Scholar 

  15. Mattauer, M. Intracontinental subduction, crust–mantle décollement and crustal-stacking wedge in the Himalayas and other collision belts. Geol. Soc. Lond. Spec. Publ. 19, 37–50 (1986).

    Article  Google Scholar 

  16. Cloos, M. Lithospheric buoyancy and collisional orogenesis: Subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol. Soc. Am. Bull. 105, 715–737 (1993).

    Article  Google Scholar 

  17. Capitanio, F. A., Morra, G. & Goes, S. Dynamic models of downgoing plate-buoyancy driven subduction: Subduction motions and energy dissipation. Earth Planet. Sci. Lett. 262, 284–297 (2007).

    Article  Google Scholar 

  18. England, P. & McKenzie, D. A thin viscous sheet model for continental deformation. Geophys. J. R. Astron. Soc. 70, 295–321 (1982).

    Article  Google Scholar 

  19. Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R. & Cobbold, P. Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology 10, 611–616 (1982).

    Article  Google Scholar 

  20. Müller, R. D., Sdrolias, M., Gaina, C. & Roest, W. R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst. 9, Q04006 (2008).

    Article  Google Scholar 

  21. de Sigoyer, J. et al. Dating the Indian continental subduction and collisional thickening in the northwest Himalaya: Multichronology of the Tso Morari eclogites. Geology 28, 487–490 (2000).

    Article  Google Scholar 

  22. Klootwijk, C. T., Gee, J. S., Peirce, J. W., Smith, G. M. & McFadden, P. L. An early India–Asia contact: Paleomagnetic constraints from Ninetyeast Ridge, ODP Leg 121. Geology 20, 295–298 (1992).

    Article  Google Scholar 

  23. Replumaz, A. & Tapponnier, P. Reconstruction of the deformed collision zone between India and Asia by backward motion of lithospheric blocks. J. Geophys. Res. 108, 2285 (2003).

    Article  Google Scholar 

  24. Chung, S. L. et al. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago. Nature 394, 769–773 (1998).

    Article  Google Scholar 

  25. Molnar, P. & Stock, J. M. Slowing of India’s convergence with Eurasia since 20 Ma and its implications for Tibetan mantle dynamics. Tectonics 28, TC3001 (2009).

    Article  Google Scholar 

  26. Molnar, P. & Lyon-Caen, H. Some simple physical aspect of the support, structure, and evolution of mountain belts. Geol. Soc. Am. Spec. Pap. 218, 179–207 (1988).

    Google Scholar 

  27. Müller, R. D. An Indian cheetah. Nature 449, 795–796 (2007).

    Article  Google Scholar 

  28. Goes, S., Capitanio, F. A. & Morra, G. Evidence of lower-mantle slab penetration phases in plate motions. Nature 451, 981–984 (2008).

    Article  Google Scholar 

  29. Gurnis, M. & Torsvik, T. H. Rapid drift of large continents during the late Precambrian and Paleozoic: Paleomagnetic constraints and dynamic models. Geology 22, 1023–1026 (1994).

    Article  Google Scholar 

  30. Conrad, C. P. & Lithgow-Bertelloni, C. How mantle slabs drive plate tectonics. Science 298, 207–209 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported under the Australian Research Council’s Discovery Projects funding scheme to F.A.C. (DP0663258, DP0878501, DP0987374), a Swiss National Fund Assistenzprofessur to S.G. and by the EURYI Awards Scheme (Euro-horcs/ESF) with funds from the National Research Council of Italy to G.M. R. D. Müller provided the rotation pole sets. We thank C. Klootwijk, C. Faccenna, D. Giardini and T. M. Harrison for discussions and D. Arcay for comments.

Author information

Authors and Affiliations

Authors

Contributions

F.A.C. and G.M. designed and carried out the numerical models. F.A.C., G.M., S.G. and L.M. discussed the implications for continental and Indian subduction. F.A.C. and R.F.W. discussed Indian tectonics. All of the authors contributed equally to writing the paper.

Corresponding author

Correspondence to F. A. Capitanio.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 370 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capitanio, F., Morra, G., Goes, S. et al. India–Asia convergence driven by the subduction of the Greater Indian continent. Nature Geosci 3, 136–139 (2010). https://doi.org/10.1038/ngeo725

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo725

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing