Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease

Abstract

Leucine-rich repeat kinase 2 (LRRK2) has been identified by genome-wide association studies as being encoded by a major susceptibility gene for Crohn's disease. Here we found that LRRK2 deficiency conferred enhanced susceptibility to experimental colitis in mice. Mechanistic studies showed that LRRK2 was a potent negative regulator of the transcription factor NFAT and was a component of a complex that included the large noncoding RNA NRON (an NFAT repressor). Furthermore, the risk-associated allele encoding LRRK2 Met2397 identified by a genome-wide association study for Crohn's disease resulted in less LRRK2 protein post-translationally. Severe colitis in LRRK2-deficient mice was associated with enhanced nuclear localization of NFAT1. Thus, our study defines a new step in the control of NFAT activation that involves an immunoregulatory function of LRRK2 and has important implications for inflammatory bowel disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LRRK2 deficiency exacerbates experimental colitis in mice.
Figure 2: LRRK2 inhibits the nuclear function of NFAT1.
Figure 3: LRRK2 affects the cytoplasmic sequestration of NFAT1 but not its phosphorylation.
Figure 4: LRRK2 regulates NFAT1 by modulating the NRON complex, and degradation of LRRK2 facilitates the translocation of NFAT1 to the nucleus.
Figure 5: LRRK2 deficiency enhances NFAT1 activity in BMDMs.
Figure 6: The CD-susceptibility allele M2397 results in LRRK2 protein of lower stability.

Similar content being viewed by others

References

  1. Abraham, C. & Cho, J.H. Inflammatory bowel disease. N. Engl. J. Med. 361, 2066–2078 (2009).

    Article  CAS  Google Scholar 

  2. Barrett, J.C. et al. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn′s disease. Nat. Genet. 40, 955–962 (2008).

    Article  CAS  Google Scholar 

  3. Franke, A. et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn′s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010).

    Article  CAS  Google Scholar 

  4. Anderson, C.A. et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43, 246–252 (2011).

    Article  CAS  Google Scholar 

  5. Kaser, A. & Blumberg, R.S. Endoplasmic reticulum stress in the intestinal epithelium and inflammatory bowel disease. Semin. Immunol. 21, 156–163 (2009).

    Article  CAS  Google Scholar 

  6. Umeno, J. et al. Meta-analysis of published studies identified eight additional common susceptibility loci for Crohn′s disease and ulcerative colitis. Inflamm. Bowel Dis published online, doi:10.1002/ibd.21651 (23 February 2011).

  7. Paisán-Ruíz, C. et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44, 595–600 (2004).

    Article  Google Scholar 

  8. Zimprich, A. et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44, 601–607 (2004).

    Article  CAS  Google Scholar 

  9. Gardet, A. et al. LRRK2 is involved in the IFN-γ response and host response to pathogens. J. Immunol. 185, 5577–5585 (2010).

    Article  CAS  Google Scholar 

  10. Rao, A., Luo, C. & Hogan, P.G. Transcription factors of the NFAT family: regulation and function. Annu. Rev. Immunol. 15, 707–747 (1997).

    Article  CAS  Google Scholar 

  11. Aliprantis, A.O. & Glimcher, L.H. NFATc1 in inflammatory and musculoskeletal conditions. Adv. Exp. Med. Biol. 658, 69–75 (2010).

    Article  CAS  Google Scholar 

  12. Kao, S.C. et al. Calcineurin/NFAT signaling is required for neuregulin-regulated Schwann cell differentiation. Science 323, 651–654 (2009).

    Article  CAS  Google Scholar 

  13. Graef, I.A. et al. Neurotrophins and netrins require calcineurin/NFAT signaling to stimulate outgrowth of embryonic axons. Cell 113, 657–670 (2003).

    Article  CAS  Google Scholar 

  14. Horsley, V., Aliprantis, A.O., Polak, L., Glimcher, L.H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299–310 (2008).

    Article  CAS  Google Scholar 

  15. Rohini, A., Agrawal, N., Koyani, C.N. & Singh, R. Molecular targets and regulators of cardiac hypertrophy. Pharmacol. Res. 61, 269–280 (2010).

    Article  CAS  Google Scholar 

  16. Ranger, A.M. et al. The transcription factor NF-ATc is essential for cardiac valve formation. Nature 392, 186–190 (1998).

    Article  CAS  Google Scholar 

  17. Greenblatt, M.B., Aliprantis, A., Hu, B. & Glimcher, L.H. Calcineurin regulates innate antifungal immunity in neutrophils. J. Exp. Med. 207, 923–931 (2010).

    Article  CAS  Google Scholar 

  18. Aramburu, J. et al. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem. Pharmacol. 72, 1597–1604 (2006).

    Article  CAS  Google Scholar 

  19. Hogan, P.G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  Google Scholar 

  20. Willingham, A.T. et al. A strategy for probing the function of noncoding RNAs finds a repressor of NFAT. Science 309, 1570–1573 (2005).

    Article  CAS  Google Scholar 

  21. Maekawa, T., Kubo, M., Yokoyama, I., Ohta, E. & Obata, F. Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochem. Biophys. Res. Commun. 392, 431–435 (2010).

    Article  CAS  Google Scholar 

  22. Tlaskalová-Hogenová, H. et al. Involvement of innate immunity in the development of inflammatory and autoimmune diseases. Ann. NY Acad. Sci. 1051, 787–798 (2005).

    Article  Google Scholar 

  23. Berndt, B.E., Zhang, M., Chen, G.H., Huffnagle, G.B. & Kao, J.Y. The role of dendritic cells in the development of acute dextran sulfate sodium colitis. J. Immunol. 179, 6255–6262 (2007).

    Article  CAS  Google Scholar 

  24. Ghia, J.E. et al. Role of M-CSF-dependent macrophages in colitis is driven by the nature of the inflammatory stimulus. Am. J. Physiol. Gastrointest. Liver Physiol. 294, G770–G777 (2008).

    Article  CAS  Google Scholar 

  25. Ahrens, R. et al. Intestinal macrophage/epithelial cell-derived CCL11/eotaxin-1 mediates eosinophil recruitment and function in pediatric ulcerative colitis. J. Immunol. 181, 7390–7399 (2008).

    Article  CAS  Google Scholar 

  26. Gwack, Y. et al. A genome-wide Drosophila RNAi screen identifies DYRK-family kinases as regulators of NFAT. Nature 441, 646–650 (2006).

    Article  CAS  Google Scholar 

  27. Greggio, E. et al. The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J. Biol. Chem. 283, 16906–16914 (2008).

    Article  CAS  Google Scholar 

  28. Shaw, K.T. et al. Immunosuppressive drugs prevent a rapid dephosphorylation of transcription factor NFAT1 in stimulated immune cells. Proc. Natl. Acad. Sci. USA 92, 11205–11209 (1995).

    Article  CAS  Google Scholar 

  29. Monticelli, S. & Rao, A. NFAT1 and NFAT2 are positive regulators of IL-4 gene transcription. Eur. J. Immunol. 32, 2971–2978 (2002).

    Article  CAS  Google Scholar 

  30. Zanoni, I. et al. CD14 regulates the dendritic cell life cycle after LPS exposure through NFAT activation. Nature 460, 264–268 (2009).

    Article  CAS  Google Scholar 

  31. Goodridge, H.S., Simmons, R.M. & Underhill, D.M. Dectin-1 stimulation by Candida albicans yeast or zymosan triggers NFAT activation in macrophages and dendritic cells. J. Immunol. 178, 3107–3115 (2007).

    Article  CAS  Google Scholar 

  32. Murthy, S.N. et al. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig. Dis. Sci. 38, 1722–1734 (1993).

    Article  CAS  Google Scholar 

  33. Melgar, S. et al. Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. Int. Immunopharmacol. 8, 836–844 (2008).

    Article  CAS  Google Scholar 

  34. Soriano-Izquierdo, A. et al. Effect of cyclosporin A on cell adhesion molecules and leukocyte-endothelial cell interactions in experimental colitis. Inflamm. Bowel Dis. 10, 789–800 (2004).

    Article  Google Scholar 

  35. Satoh, Y. et al. Cyclosporine regulates intestinal epithelial apoptosis via TGF-β-related signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 297, G514–G519 (2009).

    Article  CAS  Google Scholar 

  36. West, A.B. et al. Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc. Natl. Acad. Sci. USA 102, 16842–16847 (2005).

    Article  CAS  Google Scholar 

  37. Shih, T.C. et al. Aberrant activation of nuclear factor of activated T cell 2 in lamina propria mononuclear cells in ulcerative colitis. World J. Gastroenterol. 14, 1759–1767 (2008).

    Article  Google Scholar 

  38. Weigmann, B. et al. The transcription factor NFATc2 controls IL-6-dependent T cell activation in experimental colitis. J. Exp. Med. 205, 2099–2110 (2008).

    Article  CAS  Google Scholar 

  39. Good, M.C., Zalatan, J.G. & Lim, W.A. Scaffold proteins: hubs for controlling the flow of cellular information. Science 332, 680–686 (2011).

    Article  CAS  Google Scholar 

  40. Parisiadou, L. & Cai, H. LRRK2 function on actin and microtubule dynamics in Parkinson disease. Commun. Integr. Biol. 3, 396–400 (2010).

    Article  Google Scholar 

  41. Gehrke, S., Imai, Y., Sokol, N. & Lu, B. Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature 466, 637–641 (2010).

    Article  CAS  Google Scholar 

  42. Lin, X. et al. Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson′s-disease-related mutant α-synuclein. Neuron 64, 807–827 (2009).

    Article  CAS  Google Scholar 

  43. Tong, Y. et al. Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of α-synuclein, and apoptotic cell death in aged mice. Proc. Natl. Acad. Sci. USA 107, 9879–9884 (2010).

    Article  CAS  Google Scholar 

  44. Alegre-Abarrategui, J. & Wade-Martins, R. Parkinson disease, LRRK2 and the endocytic-autophagic pathway. Autophagy 5, 1208–1210 (2009).

    Article  CAS  Google Scholar 

  45. Plowey, E.D., Cherra, S.J. III, Liu, Y.J. & Chu, C.T. Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J. Neurochem. 105, 1048–1056 (2008).

    Article  CAS  Google Scholar 

  46. Altshuler, D., Daly, M.J. & Lander, E.S. Genetic mapping in human disease. Science 322, 881–888 (2008).

    Article  CAS  Google Scholar 

  47. Wan, F. et al. Ribosomal protein S3: a KH domain subunit in NF-κB complexes that mediates selective gene regulation. Cell 131, 927–939 (2007).

    Article  CAS  Google Scholar 

  48. Maxwell, J.R., Brown, A.W., Smith, C.L., Byrne, F.R. & Viney, J.L. Methods of inducing inflmmatory bowel disease in mice. Curr. Protoc. Pharmacol. 5, 1–37 (2009).

    Google Scholar 

Download references

Acknowledgements

We thank M. Cookson (National Institute on Aging) for plasmid pCMV-2XMyc-LRRK2 expressing Myc-tagged wild-type or kinase-dead LRRK2; N. Bidere (Institut National de la Santé et de la Recherche Médicale) for luciferase constructs of NFAT and NF-κB and a renilla luciferase construct; N. Bidere, R. Germain, C. Kanellopoulou, B. Lo, A. Snow, J. Qin and H. Su for suggestions and comments; and colleagues at the Harvard Drosophila Screening Center for sharing screen results via the World Wide Web. Supported by the Intramural Research Program of the US National Institutes of Health, National Institute of Allergy and Infectious Diseases and National Institute on Aging.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., J.L., S.K. and W.L. designed and did experiments; Z.L., H.C. and M.J.L. designed experiments and analyzed the data; and Z.L. and M.J.L. wrote the paper.

Corresponding author

Correspondence to Michael J Lenardo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 (PDF 3198 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Lee, J., Krummey, S. et al. The kinase LRRK2 is a regulator of the transcription factor NFAT that modulates the severity of inflammatory bowel disease. Nat Immunol 12, 1063–1070 (2011). https://doi.org/10.1038/ni.2113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2113

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing