Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Control of pathogens and pathobionts by the gut microbiota

Abstract

A dense resident microbial community in the gut, referred as the commensal microbiota, coevolved with the host and is essential for many host physiological processes that include enhancement of the intestinal epithelial barrier, development of the immune system and acquisition of nutrients. A major function of the microbiota is protection against colonization by pathogens and overgrowth of indigenous pathobionts that can result from the disruption of the healthy microbial community. The mechanisms that regulate the ability of the microbiota to restrain pathogen growth are complex and include competitive metabolic interactions, localization to intestinal niches and induction of host immune responses. Pathogens, in turn, have evolved strategies to escape from commensal-mediated resistance to colonization. Thus, the interplay between commensals and pathogens or indigenous pathobionts is critical for controlling infection and disease. Understanding pathogen-commensal interactions may lead to new therapeutic approaches to treating infectious diseases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Localization of dominant bacterial groups in the intestine.
Figure 2: Commensal microbiota prevents colonization by exogenous pathogens and pathobionts.
Figure 3: Pathogens overcome commensal-mediated resistance through multiple strategies.

Similar content being viewed by others

References

  1. Hooper, L.V. & Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 10, 159–169 (2010).

    CAS  PubMed  Google Scholar 

  2. Dridi, B., Raoult, D. & Drancourt, M. Archaea as emerging organisms in complex human microbiomes. Anaerobe 17, 56–63 (2011).

    PubMed  Google Scholar 

  3. Pridmore, R.D. et al. The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc. Natl. Acad. Sci. USA 101, 2512–2517 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Turnbaugh, P.J., Backhed, F., Fulton, L. & Gordon, J.I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Matamoros, S., Gras-Leguen, C., Le Vacon, F., Potel, G. & de La Cochetiere, M.F. Development of intestinal microbiota in infants and its impact on health. Trends Microbiol. 21, 167–173 (2013).

    CAS  PubMed  Google Scholar 

  6. Hasegawa, M. et al. Transitions in oral and intestinal microflora composition and innate immune receptor-dependent stimulation during mouse development. Infect. Immun. 78, 639–650 (2010).

    CAS  PubMed  Google Scholar 

  7. Koropatkin, N.M., Cameron, E.A. & Martens, E.C. How glycan metabolism shapes the human gut microbiota. Nat. Rev. Microbiol. 10, 323–335 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Willing, B. et al. Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm. Bowel Dis. 15, 653–660 (2009).

    PubMed  Google Scholar 

  9. Li, E. et al. Inflammatory bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human ileum associated microbial composition. PLoS ONE 7, e26284 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Oh, P.L. et al. Characterization of the ileal microbiota in rejecting and nonrejecting recipients of small bowel transplants. Am. J. Transplant. 12, 753–762 (2012).

    CAS  PubMed  Google Scholar 

  11. Hammami, R., Fernandez, B., Lacroix, C. & Fliss, I. Anti-infective properties of bacteriocins: an update. Cell Mol. Life Sci. advance online publication, doi:10.1007/s00018-012-1202-3 (30 October 2012).

  12. Schamberger, G.P. & Diez-Gonzalez, F. Selection of recently isolated colicinogenic Escherichia coli strains inhibitory to Escherichia coli O157:H7. J. Food Prot. 65, 1381–1387 (2002).

    PubMed  Google Scholar 

  13. Turovskiy, Y., Sutyak Noll, K. & Chikindas, M.L. The aetiology of bacterial vaginosis. J. Appl. Microbiol. 110, 1105–1128 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Cherrington, C.A., Hinton, M., Pearson, G.R. & Chopra, I. Short-chain organic acids at ph 5.0 kill Escherichia coli and Salmonella spp. without causing membrane perturbation. J. Appl. Bacteriol. 70, 161–165 (1991).

    CAS  PubMed  Google Scholar 

  15. Shin, R., Suzuki, M. & Morishita, Y. Influence of intestinal anaerobes and organic acids on the growth of enterohaemorrhagic Escherichia coli O157:H7. J. Med. Microbiol. 51, 201–206 (2002).

    CAS  PubMed  Google Scholar 

  16. Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011).

    CAS  PubMed  Google Scholar 

  17. Ceuppens, S. et al. Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits. Foodborne Pathog. Dis. 9, 1130–1136 (2012).

    CAS  PubMed  Google Scholar 

  18. Momose, Y., Hirayama, K. & Itoh, K. Competition for proline between indigenous Escherichia coli and E. coli O157:H7 in gnotobiotic mice associated with infant intestinal microbiota and its contribution to the colonization resistance against E. coli O157:H7. Antonie van Leeuwenhoek 94, 165–171 (2008).

    CAS  PubMed  Google Scholar 

  19. Momose, Y., Hirayama, K. & Itoh, K. Effect of organic acids on inhibition of Escherichia coli O157:H7 colonization in gnotobiotic mice associated with infant intestinal microbiota. Antonie van Leeuwenhoek 93, 141–149 (2008).

    CAS  PubMed  Google Scholar 

  20. Fabich, A.J. et al. Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143–1152 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Leatham, M.P. et al. Precolonized human commensal Escherichia coli strains serve as a barrier to E. coli O157:H7 growth in the streptomycin-treated mouse intestine. Infect. Immun. 77, 2876–2886 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gantois, I. et al. Butyrate specifically down-regulates Salmonella pathogenicity island 1 gene expression. Appl. Environ. Microbiol. 72, 946–949 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Pacheco, A.R. et al. Fucose sensing regulates bacterial intestinal colonization. Nature 492, 113–117 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Marteyn, B. et al. Modulation of Shigella virulence in response to available oxygen in vivo. Nature 465, 355–358 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kobayashi, K.S. et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307, 731–734 (2005).

    CAS  PubMed  Google Scholar 

  26. Vaishnava, S., Behrendt, C.L., Ismail, A.S., Eckmann, L. & Hooper, L.V. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc. Natl. Acad. Sci. USA 105, 20858–20863 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vaishnava, S. et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    CAS  PubMed  Google Scholar 

  29. Sanos, S.L. et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat. Immunol. 10, 83–91 (2009).

    CAS  PubMed  Google Scholar 

  30. Zheng, Y. et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14, 282–289 (2008).

    CAS  PubMed  Google Scholar 

  31. Kiss, E.A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    CAS  PubMed  Google Scholar 

  32. Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    CAS  PubMed  Google Scholar 

  33. Frantz, A.L. et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol. 5, 501–512 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Fagarasan, S., Kawamoto, S., Kanagawa, O. & Suzuki, K. Adaptive immune regulation in the gut: T cell-dependent and T cell-independent IgA synthesis. Annu. Rev. Immunol. 28, 243–273 (2010).

    CAS  PubMed  Google Scholar 

  35. Suzuki, K. et al. The sensing of environmental stimuli by follicular dendritic cells promotes immunoglobulin A generation in the gut. Immunity 33, 71–83 (2010).

    CAS  PubMed  Google Scholar 

  36. Strugnell, R.A. & Wijburg, O.L. The role of secretory antibodies in infection immunity. Nat. Rev. Microbiol. 8, 656–667 (2010).

    CAS  PubMed  Google Scholar 

  37. Petnicki-Ocwieja, T. et al. Nod2 is required for the regulation of commensal microbiota in the intestine. Proc. Natl. Acad. Sci. USA 106, 15813–15818 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Salzman, N.H. et al. Enteric defensins are essential regulators of intestinal microbial ecology. Nat. Immunol. 11, 76–83 (2010).

    CAS  PubMed  Google Scholar 

  39. Macpherson, A.J., Geuking, M.B. & McCoy, K.D. Homeland security: IgA immunity at the frontiers of the body. Trends Immunol. 33, 160–167 (2012).

    CAS  PubMed  Google Scholar 

  40. Franchi, L. et al. NLRC4-driven production of IL-1beta discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ivanov, I.I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bohnhoff, M., Drake, B.L. & Miller, C.P. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection. Proc. Soc. Exp. Biol. Med. 86, 132–137 (1954).

    CAS  PubMed  Google Scholar 

  43. Endt, K. et al. The microbiota mediates pathogen clearance from the gut lumen after non-typhoidal Salmonella diarrhea. PLoS Pathog. 6, e1001097 (2010).

    PubMed  PubMed Central  Google Scholar 

  44. Ayres, J.S., Trinidad, N.J. & Vance, R.E. Lethal inflammasome activation by a multidrug-resistant pathobiont upon antibiotic disruption of the microbiota. Nat. Med. 18, 799–806 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Rupnik, M., Wilcox, M.H. & Gerding, D.N. Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat. Rev. Microbiol. 7, 526–536 (2009).

    CAS  PubMed  Google Scholar 

  46. Ng, J. et al. Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139, 542–552 (2010).

    CAS  PubMed  Google Scholar 

  47. Hasegawa, M. et al. Protective role of commensals against Clostridium difficile infection via an IL-1beta-mediated positive-feedback loop. J. Immunol. 189, 3085–3091 (2012).

    CAS  PubMed  Google Scholar 

  48. Arias, C.A. & Murray, B.E. The rise of the Enterococcus: beyond vancomycin resistance. Nat. Rev. Microbiol. 10, 266–278 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Brandl, K. et al. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455, 804–807 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kinnebrew, M.A. et al. Bacterial flagellin stimulates Toll-like receptor 5-dependent defense against vancomycin-resistant Enterococcus infection. J. Infect. Dis. 201, 534–543 (2010).

    CAS  PubMed  Google Scholar 

  51. Ubeda, C. et al. Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect. Immun. 81, 965–973 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Giel, J.L., Sorg, J.A., Sonenshein, A.L. & Zhu, J. Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS ONE 5, e8740 (2010).

    PubMed  PubMed Central  Google Scholar 

  53. Kane, M. et al. Successful transmission of a retrovirus depends on the commensal microbiota. Science 334, 245–249 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Kuss, S.K. et al. Intestinal microbiota promote enteric virus replication and systemic pathogenesis. Science 334, 249–252 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Le Bouguenec, C. & Schouler, C. Sugar metabolism, an additional virulence factor in enterobacteria. Int. J. Med. Microbiol. 301, 1–6 (2011).

    CAS  PubMed  Google Scholar 

  56. Perna, N.T. et al. Genome sequence of enterohaemorrhagic Escherichia coli O157:H7. Nature 409, 529–533 (2001).

    CAS  PubMed  Google Scholar 

  57. Bertin, Y. et al. Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content. Environ. Microbiol. 13, 365–377 (2011).

    CAS  PubMed  Google Scholar 

  58. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Crosa, J.H. & Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev. 66, 223–249 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Fischbach, M.A., Lin, H., Liu, D.R. & Walsh, C.T. How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat. Chem. Biol. 2, 132–138 (2006).

    CAS  PubMed  Google Scholar 

  61. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 204 (2007).

    CAS  PubMed  Google Scholar 

  62. Furne, J., Springfield, J., Koenig, T., DeMaster, E. & Levitt, M.D. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: a specialized function of the colonic mucosa. Biochem. Pharmacol. 62, 255–259 (2001).

    CAS  PubMed  Google Scholar 

  63. Levitt, M.D., Furne, J., Springfield, J., Suarez, F. & DeMaster, E. Detoxification of hydrogen sulfide and methanethiol in the cecal mucosa. J. Clin. Invest. 104, 1107–1114 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Winter, S.E. et al. Gut inflammation provides a respiratory electron acceptor for Salmonella. Nature 467, 426–429 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Thiennimitr, P. et al. Intestinal inflammation allows Salmonella to use ethanolamine to compete with the microbiota. Proc. Natl. Acad. Sci. USA 108, 17480–17485 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kolios, G., Valatas, V. & Ward, S.G. Nitric oxide in inflammatory bowel disease: a universal messenger in an unsolved puzzle. Immunology 113, 427–437 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Reinders, C.A. et al. Rectal nitric oxide and fecal calprotectin in inflammatory bowel disease. Scand. J. Gastroenterol. 42, 1151–1157 (2007).

    CAS  PubMed  Google Scholar 

  68. Winter, S.E. et al. Host-derived nitrate boosts growth of E. coli in the inflamed gut. Science 339, 708–711 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, L. et al. Recognition of host immune activation by Pseudomonas aeruginosa. Science 309, 774–777 (2005).

    CAS  PubMed  Google Scholar 

  70. Kaper, J.B., Nataro, J.P. & Mobley, H.L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    CAS  PubMed  Google Scholar 

  71. Reeves, A.E., Koenigsknecht, M.J., Bergin, I.L. & Young, V.B. Suppression of Clostridium difficile in the gastrointestinal tracts of germfree mice inoculated with a murine isolate from the family Lachnospiraceae. Infect. Immun. 80, 3786–3794 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    CAS  PubMed  Google Scholar 

  73. Petrof, E.O. et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: 'RePOOPulating' the gut. Microbiome 1, 3 (2013).

    PubMed  PubMed Central  Google Scholar 

  74. Ubeda, C. et al. Familial transmission rather than defective innate immunity shapes the distinct intestinal microbiota of TLR-deficient mice. J. Exp. Med. 209, 1445–1456 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. Martens for critical review of the manuscript. Studies on the microbiota in our laboratory are supported by grants from US National Institutes of Health, and the Bill & Melinda Gates Foundation. N.K. is supported by a Research Fellowship from the Crohn's and Colitis Foundation of America.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Núñez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamada, N., Chen, G., Inohara, N. et al. Control of pathogens and pathobionts by the gut microbiota. Nat Immunol 14, 685–690 (2013). https://doi.org/10.1038/ni.2608

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2608

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing