Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming

Abstract

Naive T cells are stimulated by antigen-presenting dendritic cells (DCs) in secondary lymphoid organs, but whether other types of cell participate in T cell priming is unclear. Here we show in mice that natural killer (NK) cells, which are normally excluded from lymph nodes, are rapidly recruited in a CCR7-independent, CXCR3-dependent manner to lymph nodes on stimulation by the injection of mature DCs. Recruitment of NK cells is also induced by some, but not all, adjuvants and correlates with the induction of T helper cell type 1 (TH1) responses. NK cell depletion and reconstitution experiments show that NK cells provide an early source of interferon-γ (IFN-γ) that is necessary for TH1 polarization. Taken together, our results identify an induced pathway of NK cell migration in antigen-stimulated lymph nodes and a mechanism by which some adjuvants may facilitate TH1 responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NK cells are recruited and activated in DC-draining lymph nodes.
Figure 2: NK cells reach DC-draining lymph nodes in a CCR7-independent, CXCR3-dependent fashion.
Figure 3: Adjuvants that recruit NK cells induce TH1 polarization.
Figure 4: In vivo depletion of NK cells leads to defective TH1 polarization.
Figure 5: IFN-γ produced by migrating NK cells is necessary for TH1 polarization.

Similar content being viewed by others

References

  1. Banchereau, J. & Steinman, R.M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Moingeon, P., Haensler, J. & Lindberg, A. Towards the rational design of Th1 adjuvants. Vaccine 19, 4363–4372 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov, R. & Janeway, C.A. Jr. Innate immune induction of the adaptive immune response. Cold Spring Harb. Symp. Quant. Biol. 64, 429–435 (1999).

    Article  CAS  PubMed  Google Scholar 

  4. Rot, A. & von Andrian, U.H. Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu. Rev. Immunol. 22, 891–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. von Andrian, U.H. & Mempel, T.R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol. 3, 867–878 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 23–33 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Gunn, M.D. et al. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J. Exp. Med. 189, 451–460 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Scimone, M.L. et al. CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J. Exp. Med. 199, 1113–1120 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Martín-Fontecha, A. et al. Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J. Exp. Med. 198, 615–621 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Macatonia, S.E. et al. Dendritic cells produce IL-12 and direct the development of Th1 cells from naive CD4+ T cells. J. Immunol. 154, 5071–5079 (1995).

    CAS  PubMed  Google Scholar 

  13. Cella, M. et al. Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J. Exp. Med. 184, 747–752 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Snijders, A., Kalinski, P., Hilkens, C.M. & Kapsenberg, M.L. High-level IL-12 production by human dendritic cells requires two signals. Int. Immunol. 10, 1593–1598 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Szabo, S.J., Sullivan, B.M., Peng, S.L. & Glimcher, L.H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Moretta, L. et al. Human natural killer cells: their origin, receptors and function. Eur. J. Immunol. 32, 1205–1211 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Diefenbach, A. & Raulet, D.H. Innate immune recognition by stimulatory immunoreceptors. Curr. Opin. Immunol. 15, 37–44 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Cerwenka, A. & Lanier, L.L. Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 1, 41–49 (2001).

    Article  CAS  PubMed  Google Scholar 

  20. Yokoyama, W.M., Kim, S. & French, A.R. The dynamic life of natural killer cells. Annu. Rev. Immunol. 22, 405–429 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Moretta, A. Natural killer cells and dendritic cells: rendezvous in abused tissues. Nat. Rev. Immunol. 2, 957–964 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Cooper, M.A., Fehniger, T.A., Fuchs, A., Colonna, M. & Caligiuri, M.A. NK cell and DC interactions. Trends Immunol. 25, 47–52 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Gerosa, F. et al. Reciprocal activating interaction between natural killer cells and dendritic cells. J. Exp. Med. 195, 327–333 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ferlazzo, G. et al. Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J. Exp. Med. 195, 343–351 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Piccioli, D., Sbrana, S., Melandri, E. & Valiante, N.M. Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J. Exp. Med. 195, 335–341 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mailliard, R.B. et al. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J. Immunol. 171, 2366–2373 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Scharton, T.M. & Scott, P. Natural killer cells are a source of interferon γ that drives differentiation of CD4+ T cell subsets and induces early resistance to Leishmania major in mice. J. Exp. Med. 178, 567–577 (1993).

    Article  CAS  PubMed  Google Scholar 

  28. Fehniger, T.A. et al. CD56bright natural killer cells are present in human lymph nodes and are activated by T cell–derived IL-2: a potential new link between adaptive and innate immunity. Blood 101, 3052–3057 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Ferlazzo, G. et al. The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J. Immunol. 172, 1455–1462 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bjorkdahl, O. et al. Characterization of CC-chemokine receptor 7 expression on murine T cells in lymphoid tissues. Immunology 110, 170–179 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hsieh, C.S., Macatonia, S.E., O'Garra, A. & Murphy, K.M. T cell genetic background determines default T helper phenotype development in vitro. J. Exp. Med. 181, 713–721 (1995).

    Article  CAS  PubMed  Google Scholar 

  32. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alpan, O., Bachelder, E., Isil, E., Arnheiter, H. & Matzinger, P. 'Educated' dendritic cells act as messengers from memory to naive T helper cells. Nat. Immunol. 5, 615–622 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Frigerio, S. et al. β Cells are responsible for CXCR3-mediated T-cell infiltration in insulitis. Nat. Med. 8, 1414–1420 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Jiang, D. et al. Regulation of pulmonary fibrosis by chemokine receptor CXCR3. J. Clin. Invest. 114, 291–299 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Janatpour, M.J., Hudak, S., Sathe, M., Sedgwick, J.D. & McEvoy, L.M. Tumor necrosis factor–dependent segmental control of MIG expression by high endothelial venules in inflamed lymph nodes regulates monocyte recruitment. J. Exp. Med. 194, 1375–1384 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yoneyama, H. et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int. Immunol. 16, 915–928 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Yoneyama, H. et al. Pivotal role of dendritic cell–derived CXCL10 in the retention of T helper cell 1 lymphocytes in secondary lymph nodes. J. Exp. Med. 195, 1257–1266 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Moser, M. & Murphy, K.M. Dendritic cell regulation of TH1-TH2 development. Nat. Immunol. 1, 199–205 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Snijders, A., Kalinski, P., Hilkens, C.M. & Kapsenberg, M.L. High-level IL-12 production by human dendritic cells requires two signals. Int. Immunol. 10, 1593–1598 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. Noben-Trauth, N., Hu-Li, J. & Paul, W.E. Conventional, naive CD4+ T cells provide an initial source of IL-4 during Th2 differentiation. J. Immunol. 165, 3620–3625 (2000).

    Article  CAS  PubMed  Google Scholar 

  44. Granucci, F. et al. A contribution of mouse dendritic cell–derived IL-2 for NK cell activation. J. Exp. Med. 200, 287–295 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Vitale, M. et al. The small subset of CD56brightCD16 natural killer cells is selectively responsible for both cell proliferation and interferon-γ production upon interaction with dendritic cells. Eur. J. Immunol. 34, 1715–1722 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Lanzavecchia, A. & Sallusto, F. Dynamics of T lymphocyte responses: intermediates, effectors, and memory cells. Science 290, 92–97 (2000).

    Article  CAS  PubMed  Google Scholar 

  47. Wakil, A.E., Wang, Z.E., Ryan, J.C., Fowell, D.J. & Locksley, R.M. Interferon γ derived from CD4+ T cells is sufficient to mediate T helper cell type 1 development. J. Exp. Med. 188, 1651–1656 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Satoskar, A.R. et al. Mice lacking NK cells develop an efficient Th1 response and control cutaneous Leishmania major infection. J. Immunol. 162, 6747–6754 (1999).

    CAS  PubMed  Google Scholar 

  49. O'Hagan, D.T. & Valiante, N.M. Recent advances in the discovery and delivery of vaccine adjuvants. Nat. Rev. Drug Discov. 2, 727–735 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hancock, W.W. et al. Requirement of the chemokine receptor CXCR3 for acute allograft rejection. J. Exp. Med. 192, 1515–1520 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  PubMed  Google Scholar 

  52. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Uguccioni for reading the manuscript and for comments. This work was supported by grants from the Swiss National Science Foundation (31-63885) and from the European Commission ('Memovax' QLK2-CT-2001-01205 and 'Main' FP6-502935). The Institute for Research in Biomedicine is supported by the Helmut Horten Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alfonso Martín-Fontecha or Federica Sallusto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Kinetics of NK cell migration to lymph nodes. (PDF 62 kb)

Supplementary Fig. 2

Injection in vivo of anti-asialo GM-1 antibody results in the depletion of NK cells but not of αβ T cells, γδ T cells, or B cells. (PDF 116 kb)

Supplementary Fig. 3

Purity of NK cells used for transfer and migration experiments. (PDF 43 kb)

Supplementary Fig. 4

B6D2F1 mice were adoptively transferred with DO11.10 T cells and depleted of NK cells by injection of anti-NK1.1 antibody. (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Fontecha, A., Thomsen, L., Brett, S. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for TH1 priming. Nat Immunol 5, 1260–1265 (2004). https://doi.org/10.1038/ni1138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1138

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing