Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis

Abstract

As a result of bioassay–guided fractionation, betulinic acid, a pentacyclic triterpene, was identified as a melanoma–specific cytotoxic agent. In follow–up studies conducted with athymic mice carrying human melanomas, tumour growth was completely inhibited without toxicity. As judged by a variety of cellular responses, antitumour activity was mediated by the induction of apoptosis. Betulinic acid is inexpensive and available in abundant supply from common natural sources, notably the bark of white birch trees. The compound is currently undergoing preciinicai development for the treatment or prevention of malignant melanoma.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ries, L.A., Hankey, B.S. & Edwards, B.K., Institutes of Health Publication No.902789 (Division of Cancer Prevention and Control, National Cancer Institute, Bethesda, MD, 1990).

  2. Brozena, S.J., Fenska, N.A. & Perez, I.R. Epidemiology of malignant melanoma, worldwide incidence, and etiologic factors. Semin. surg. Oncol. 9, 165–167 (1993).

    CAS  PubMed  Google Scholar 

  3. Boring, C.C., Squires, T.S., Tong, T. & Montgomery, S. Cancer statistics 1994. CA: Cancer J. Clinicians 44, 7–26 (1994).

    CAS  Google Scholar 

  4. Comis, R.L. DTIC (NSC-45388) in malignant melanoma: A perspective. Cancer Treat. Rep. 60, 165–176 (1976).

    CAS  PubMed  Google Scholar 

  5. McClay, E.F. & McClay, M.E., Tamoxifen: Is it useful in the treatment of patients with metastatic melanoma? J. clin. Oncol. 12, 617–626 (1994).

    Article  CAS  Google Scholar 

  6. Mastrangelo, M.J. Controlled studies in chemotherapy for advanced melanoma. in Malignant Melanoma: Medical and Surgical Management (eds Lejeune, F., Chaudhuri, P.K. & Das Gupta, T.K.) 295–302 (McGraw-Hill Inc., New York, 1995).

    Google Scholar 

  7. Richards, J.M., Ramming, K., Bitran, J.D., Doane, L.L. & Priest, E.R. Combination of chemotherapy and biological therapy for the treatment of melanoma. Clin. Res. 38, 844A (1990).

    Google Scholar 

  8. Richards, J.M., Mehta, N., Ramming, K. & Skosey, P. Sequential chemoimmuno-therapy in the treatment of metastatic melanoma. J. clin. Oncol. 10, 1338–1343 (1992).

    Article  CAS  Google Scholar 

  9. Cragg, G.M. et al. Role of plants in the National Cancer Institute Drug Discovery and Development Program. in Human Medicinal Agents from Plants, ACS Symposium Series 534 (eds. Kinghom, A.D. & Balandrin, M.F.) 80–95 (American Chemical Society Books, Washington, DC, 1993).

    Chapter  Google Scholar 

  10. Wall, M.E. & Wani, M.C. Camptothecin and analogues: Synthesis, biological in vitro and in vivo activities and clinical possibilities. in Human Medicinal Agents from Plants, ACS Symposium Series 534 (eds. Kinghorn, A.D. & Balandrin, M.F.) 149–169 (American Chemical Society Books, Washington, DC, 1993).

    Chapter  Google Scholar 

  11. Thompson, H.J., Strange, R. & Schedin, P.J. Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol. Biomarkers Prevent. 1, 597–602 (1992).

    CAS  Google Scholar 

  12. Wyllie, A.H. The biology of cell death in tumours. Anticancer Res. 5, 131–136 (1985).

    CAS  PubMed  Google Scholar 

  13. Suffness, M. et al. The National Cooperative Natural Products Drug Discovery Group (NCDDG) and International Cooperative Biodiversity Group (ICBG) Programs. Int. J. Pharmacog. 33 (suppl.), 5–16 (1995).

    Article  Google Scholar 

  14. Cordell, G.A. et al. Novel strategies for the discovery of plant-derived anti-cancer agents. in Human Medicinal Agents from Plants, ACS Symposium Series 534 (eds. Kinghorn, A.D. & Balandrin, M.F.) 191–204 (American Chemical Society Books, Washington, DC, 1993).

    Chapter  Google Scholar 

  15. Pezzuto, J.M., Shieh, H.-L., Shaughnessy, E. & Beattie, C.W. Approaches for drug development in treatment of advanced melanoma. Semin. Oncol. 15, 578–588 (1988).

    CAS  PubMed  Google Scholar 

  16. Kingston, D.G.I. & Mujal, R.C. Plant anticancer agents. VIII. Constituents of Inga punctata. J. Nat. Prod. 41, 499–500 (1978).

    CAS  Google Scholar 

  17. Sheth, K., Jolad, S., Wiedhopf, R. & Cole, J.R. Tumor-inhibitory agents from Hyptis emoryi (Labiatae). J. pharm. Sci. 61, 1819 (1972).

    Article  CAS  Google Scholar 

  18. Miles, D.H., Kokpol, U., Zalkow, L.H., Steindell, S.J. & Nabors, J.B. Tumor inhibitors I: Preliminary investigation of antitumor activity of Sarracenia flava. J. pharm. Sci. 63, 613–615 (1974).

    Article  CAS  Google Scholar 

  19. Trumbull, E.R., Bianchi, E., Eckert, D.J., Wiedhopf, R.M. & Cole, J.R. Tumor inhibitory agents from Vauquelinia corymbosa (Rosaceae). J. pharm. Sci. 65, 1407–1408 (1976).

    Article  CAS  Google Scholar 

  20. Sandberg, F., Dutschewska, H., Christov, V. & Spassov, S. Spondiathus preussii var. glaber Engler. Pharmaceutic screening of triterpenes. Acta Pharm. Suec. 24, 253–256 (1987).

    CAS  PubMed  Google Scholar 

  21. Walker, P.R., Kokileva, L., Leblanc, J. & Sikorska, M. Detection of initial stages of DNA fragmentation in apoptosis. BioTechniques 15, 1032–1040 (1993).

    CAS  PubMed  Google Scholar 

  22. Cohen, G.M. et al. Formation of large molecular weight fragments of DNA is a key committed step of apoptosis in thymocytes. J. Immun. 153, 507–516 (1994).

    CAS  PubMed  Google Scholar 

  23. O'Connell, M.M., Bentley, M.D., Campbell, C.S. & Cole, B.J.W. Betulin and lupeol in bark from four white-barked birches. Phytochemistry 27, 2175–2176 (1988).

    Article  CAS  Google Scholar 

  24. Ruzicka, L., Lamberton, A.H. & Christie, C.W., Zur Kenntnis der Triterpene. Oxydation des Betulin-Mono-Acetats mit Chromotrioxyd zu sauren Produkten. Helv. Chim. Acta 21, 1706–1717 (1938).

    Article  CAS  Google Scholar 

  25. Robertson, A., Suliman, G. & Owen, E.C. Polyterpenoid compounds. Part I. Betulic acid from Comus florida, L. J. chem. Soc. 1939, 1267–1273 (1939).

    Article  Google Scholar 

  26. Fujioka, T. et al. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti-HIV principles from Syzigium daviform and the anti-HIV activity of structurally related triterpenoids. J. Nat. Prod. 57, 243–247 (1994).

    Article  CAS  Google Scholar 

  27. Siddiqui, S., Hafeez, F., Begum, S. & Siddiqui, B.S., Oleanderol, a new pentacyclic triterpene from the leaves of Nerium oleander. J. Nat. Prod. 51, 229–233 (1988).

    Article  CAS  Google Scholar 

  28. Robinson, F. Jr. & Martel, H. Betulinic acid from Arbutus menziesii. Phytochemistry 9, 907–909 (1970).

    Article  CAS  Google Scholar 

  29. Sholichin, M., Yamasaki, K., Kasai, R. & Tanaka, O. 13C. Nuclear magnetic resonance of lupane-type triterpenes, lupeol, betulin and betulinic acid. Chem. Pharm. Bull. 28, 1006–1008 (1980).

    Article  CAS  Google Scholar 

  30. Likhitwitayawuid, K., Angerhofer, C.K., Cordell, G.A., Pezzuto, J.M. & Raungrungsi, N. Cytotoxic and antimalarial alkaloids from tubers of Stephania pierrei. J. Nat. Prod. 58, 1468–1478 (1993).

    Article  Google Scholar 

  31. Hotz, M.A., Gong, J., Traganos, F. & Darzynkiewicz, Z. Detection of apoptosis: Comparison of the assays of in situ DNA degradation and chromatin changes. Cytometry 15, 237–244 (1994).

    Article  CAS  Google Scholar 

  32. Waller, D.P., Zaneveld, L.J.D. & Fong, H.H.S. In vitro spermicidal activity of gossypol. Contraception 22, 183–187 (1980).

    Article  CAS  Google Scholar 

  33. Geran, R.I., Greenberg, N.H., Macdonald, M.M., Schumacker, A.M. & Abbott, B.J. Cancer Chemother. Rep. 3, 1–94 (1972).

    Google Scholar 

  34. Studies conducted with laboratory animals were approved by the University of Illinois at Chicago Institutional Review Board and conform with NIH guidelines.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisha, E., Chai, H., Lee, IS. et al. Discovery of betulinic acid as a selective inhibitor of human melanoma that functions by induction of apoptosis. Nat Med 1, 1046–1051 (1995). https://doi.org/10.1038/nm1095-1046

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1095-1046

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing