Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress

Abstract

Signaling by the calcium-dependent phosphatase calcineurin profoundly influences the growth and gene expression of cardiac and skeletal muscle. Calcineurin binds to calsarcins, a family of muscle-specific proteins of the sarcomeric Z-disc, a focal point in the pathogenesis of human cardiomyopathies. We show that calsarcin-1 negatively modulates the functions of calcineurin, such that calcineurin signaling was enhanced in striated muscles of mice that do not express calsarcin-1. As a consequence of inappropriate calcineurin activation, mice with a null mutation in calsarcin-1 showed an excess of slow skeletal muscle fibers. The absence of calsarcin-1 also activated a hypertrophic gene program, despite the absence of hypertrophy, and enhanced the cardiac growth response to pressure overload. In contrast, cardiac adaptation to other hypertrophic stimuli, such as chronic catecholamine stimulation or exercise, was not affected. These findings show important roles for calsarcins as modulators of calcineurin signaling and the transmission of a specific subset of stress signals leading to cardiac remodeling in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeting the Myoz2 gene.
Figure 2: Abnormalities in slow-twitch skeletal muscle fibers in calsarcin-1-deficient mice.
Figure 3: Activation of fetal genes without cardiac hypertrophy in calsarcin-1-deficient mice.
Figure 4: Exacerbation of hypertrophy in response to calcineurin activation and thoracic aortic banding in calsarcin-1-deficient mice.
Figure 5: Lack of a differential response to chronic β-adrenergic stimulation in hearts from wild-type and calsarcin-1-deficient animals.
Figure 6: Proposed model of the role of calsarcin-1 in vivo.

Similar content being viewed by others

References

  1. Olson, E.N. & Williams, R.S. Calcineurin signaling and muscle remodeling. Cell 101, 689–692 (2000).

    Article  CAS  Google Scholar 

  2. Frey, N., McKinsey, T.A. & Olson, E.N. Decoding calcium signals involved in cardiac growth and function. Nat. Med. 6, 1221–1227 (2000).

    Article  CAS  Google Scholar 

  3. Crabtree, G.R. & Olson, E.N. NFAT signaling: choreographing the social lives of cells. Cell 109 Suppl, 67–79 (2002).

    Article  Google Scholar 

  4. Hogan, P.G., Chen, L., Nardone, J. & Rao, A. Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 17, 2205–2232 (2003).

    Article  CAS  Google Scholar 

  5. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  6. Sussman, M.A. et al. Pathogenesis of dilated cardiomyopathy: molecular, structural, and population analyses in tropomodulin-overexpressing transgenic mice. Am. J. Pathol. 155, 2101–2113 (1999).

    Article  CAS  Google Scholar 

  7. Wang, Y. et al. Direct biomechanical induction of endogenous calcineurin inhibitor Down Syndrome Critical Region-1 in cardiac myocytes. Am. J. Physiol. Heart Circ. Physiol. 283, H533–H539 (2002).

    Article  CAS  Google Scholar 

  8. Hill, J.A. et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation 101, 2863–2869 (2000).

    Article  CAS  Google Scholar 

  9. Rothermel, B.A. et al. Myocyte-enriched calcineurin-interacting protein, MCIP1, inhibits cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 98, 3328–3333 (2001).

    Article  CAS  Google Scholar 

  10. Hill, J.A. et al. Targeted inhibition of calcineurin in pressure-overload cardiac hypertrophy. Preservation of systolic function. J. Biol. Chem. 277, 10251–10255 (2002).

    Article  CAS  Google Scholar 

  11. Taigen, T., De Windt, L.J., Lim, H.W. & Molkentin, J.D. Targeted inhibition of calcineurin prevents agonist-induced cardiomyocyte hypertrophy. Proc. Natl. Acad. Sci. USA 97, 1196–1201 (2000).

    Article  CAS  Google Scholar 

  12. Serrano, A.L. et al. Calcineurin controls nerve activity-dependent specification of slow skeletal muscle fibers but not muscle growth. Proc. Natl. Acad. Sci. USA 98, 13108–13113 (2001).

    Article  CAS  Google Scholar 

  13. Naya, F.J. et al. Stimulation of slow skeletal muscle fiber gene expression by calcineurin in vivo. J. Biol. Chem. 275, 4545–4548 (2000).

    Article  CAS  Google Scholar 

  14. Chin, E.R. et al. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12, 2499–2509 (1998).

    Article  CAS  Google Scholar 

  15. Frey, N., Richardson, J.A. & Olson, E.N. Calsarcins, a novel family of sarcomeric calcineurin-binding proteins. Proc. Natl. Acad. Sci. USA 97, 14632–14637 (2000).

    Article  CAS  Google Scholar 

  16. Frey, N. & Olson, E.N. Calsarcin-3, a novel skeletal muscle-specific member of the calsarcin family, interacts with multiple Z-disc proteins. J. Biol. Chem. 277, 13998–14004 (2002).

    Article  CAS  Google Scholar 

  17. Faulkner, G. et al. FATZ, a filamin-, actinin-, and telethonin-binding protein of the Z-disc of skeletal muscle. J. Biol. Chem. 275, 41234–41242 (2000).

    Article  CAS  Google Scholar 

  18. Takada, F. et al. Myozenin: an alpha-actinin- and gamma-filamin-binding protein of skeletal muscle Z lines. Proc. Natl. Acad. Sci. USA 98, 1595–1600 (2001).

    CAS  PubMed  Google Scholar 

  19. Knoll, R. et al. The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy. Cell 111, 943–955 (2002).

    Article  CAS  Google Scholar 

  20. Kovacic-Milivojevic, B. et al. Focal adhesion kinase and p130Cas mediate both sarcomeric organization and activation of genes associated with cardiac myocyte hypertrophy. Mol. Biol. Cell 12, 2290–2307 (2001).

    Article  CAS  Google Scholar 

  21. Furukawa, T. et al. Specific interaction of the potassium channel beta-subunit minK with the sarcomeric protein T-cap suggests a T-tubule-myofibril linking system. J. Mol. Biol. 313, 775–784 (2001).

    Article  CAS  Google Scholar 

  22. Berchtold, M.W., Brinkmeier, H. & Muntener, M. Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol. Rev. 80, 1215–1265 (2000).

    Article  CAS  Google Scholar 

  23. Schiaffino, S. & Serrano, A. Calcineurin signaling and neural control of skeletal muscle fiber type and size. Trends Pharmacol. Sci. 23, 569–575 (2002).

    Article  CAS  Google Scholar 

  24. Parsons, S.A., Wilkins, B.J., Bueno, O.F. & Molkentin, J.D. Altered skeletal muscle phenotypes in calcineurin Aalpha and Abeta gene-targeted mice. Mol. Cell. Biol. 23, 4331–4343 (2003).

    Article  CAS  Google Scholar 

  25. Yang, J. et al. Independent signals control expression of the calcineurin inhibitory proteins MCIP1 and MCIP2 in striated muscles. Circ. Res. 87, E61–E68 (2000).

    Article  CAS  Google Scholar 

  26. Lim, H.W. et al. Calcineurin expression, activation, and function in cardiac pressure-overload hypertrophy. Circulation 101, 2431–2437 (2000).

    Article  CAS  Google Scholar 

  27. Antos, C.L. et al. Activated glycogen synthase-3 beta suppresses cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 99, 907–912 (2002).

    Article  CAS  Google Scholar 

  28. Brancaccio, M. et al. Melusin, a muscle-specific integrin beta1-interacting protein, is required to prevent cardiac failure in response to chronic pressure overload. Nat. Med. 9, 68–75 (2003).

    Article  CAS  Google Scholar 

  29. Saito, S. et al. beta-Adrenergic pathway induces apoptosis through calcineurin activation in cardiac myocytes. J. Biol. Chem. 275, 34528–34533 (2000).

    Article  CAS  Google Scholar 

  30. De Windt, L.J. et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 98, 3322–3327 (2001).

    Article  CAS  Google Scholar 

  31. Morisco, C. et al. The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. J. Biol. Chem. 275, 14466–14475 (2000).

    Article  CAS  Google Scholar 

  32. Ryeom, S., Greenwald, R.J., Sharpe, A.H. & McKeon, F. The threshold pattern of calcineurin-dependent gene expression is altered by loss of the endogenous inhibitor calcipressin. Nat. Immunol. 4, 874–881 (2003).

    Article  CAS  Google Scholar 

  33. Hilioti, Z. et al. GSK-3 kinases enhance calcineurin signaling by phosphorylation of RCNs. Genes Dev. 18, 35–47 (2004).

    Article  CAS  Google Scholar 

  34. Vega, R.B., Yang, J., Rothermel, B.A., Bassel-Duby, R. & Williams, R.S. Multiple domains of MCIP1 contribute to inhibition of calcineurin activity. J. Biol. Chem. 277, 30401–30407 (2002).

    Article  CAS  Google Scholar 

  35. Chang, S. et al. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24, 8467–8476 (2004).

    Article  CAS  Google Scholar 

  36. Zhang, C.L. et al. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110, 479–488 (2002).

    Article  CAS  Google Scholar 

  37. Liu, Y., Cseresnyes, Z., Randall, W.R. & Schneider, M.F. Activity-dependent nuclear translocation and intranuclear distribution of NFATc in adult skeletal muscle fibers. J. Cell Biol. 155, 27–39 (2001).

    Article  CAS  Google Scholar 

  38. Sah, R. et al. Inhibition of calcineurin and sarcolemmal Ca2+ influx protects cardiac morphology and ventricular function in K(v)4.2N transgenic mice. Circulation 105, 1850–1856 (2002).

    Article  CAS  Google Scholar 

  39. Chien, K.R. Genomic circuits and the integrative biology of cardiac diseases. Nature 407, 227–232 (2000).

    Article  CAS  Google Scholar 

  40. Clark, K.A., McElhinny, A.S., Beckerle, M.C. & Gregorio, C.C. Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell Dev. Biol. 18, 637–706 (2002).

    Article  CAS  Google Scholar 

  41. Schonberger, J. & Seidman, C.E. Many roads lead to a broken heart: the genetics of dilated cardiomyopathy. Am. J. Hum. Genet. 69, 249–260 (2001).

    Article  CAS  Google Scholar 

  42. Mohapatra, B. et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 80, 207–215 (2003).

    Article  CAS  Google Scholar 

  43. Vatta, M. et al. Mutations in Cypher/ZASP in patients with dilated cardiomyopathy and left ventricular non-compaction. J. Am. Coll. Cardiol. 42, 2014–2027 (2003).

    Article  CAS  Google Scholar 

  44. Arimura, T. et al. A Cypher/ZASP mutation associated with dilated cardiomyopathy alters the binding affinity to protein kinase C. J. Biol. Chem. 279, 6746–6752 (2003).

    Article  Google Scholar 

  45. Heineke, J. et al. Downregulation of cytoskeletal muscle LIM protein by nitric oxide: impact on cardiac myocyte hypertrophy. Circulation 107, 1424–1432 (2003).

    Article  CAS  Google Scholar 

  46. Wu, H. et al. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 20, 6414–6423 (2001).

    Article  CAS  Google Scholar 

  47. Wettschureck, N. et al. Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Gq/G11 . Nat. Med. 7, 1236–1240 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Tizenor for graphics, J. Page for editorial assistance, and U. Öhl and J. Emma for excellent technical assistance. D. J. Garry provided the running cages for mouse exercise training. The advice of T. Fehm on statistical analyses is appreciated. We are grateful to S. Schiaffino and E. Bush for providing antibodies and H. Weiler (Blood Research Institute) for ES cell targeting. E.N.O. was supported by grants from the US National Institutes of Health, the Donald W. Reynolds Foundation, the Robert A. Welch Foundation and the Texas Advanced Technology Program. T.B was supported by the US National Institutes of Health minority supplement grant. N.F. was supported by grants of the Deutsche Forschungsgemeinschaft (Fr1289/1-1 and Fr1289/3-1) and the Young Investigator Program of the University of Heidelberg.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Norbert Frey or Eric N Olson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Smaller cardiomyocytes in calsarcin-deficient hearts. (PDF 92 kb)

Supplementary Fig. 2

Calsarcin inhibits calcineurin activity in vitro. (PDF 37 kb)

Supplementary Fig. 3

Calsarcin-1 null/MCIP-transgenic mice display superinduction of ANF-expression. (PDF 97 kb)

Supplementary Fig. 4

Similar degree of exercise-induced hypertrophy in wild-type and calsarcin mutant hearts (PDF 45 kb)

Supplementary Table 1

Transthoracic echocardiographic analysis of wild-type and calsarcin mutant hearts (PDF 112 kb)

Supplementary Table 2

Characterization of left ventricular mechanics by pressure-volume measurements (PDF 143 kb)

Supplementary Table 3

Sequences of primers used in dot-blot and rea-time PCR experiments (PDF 113 kb)

Supplementary Methods (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, N., Barrientos, T., Shelton, J. et al. Mice lacking calsarcin-1 are sensitized to calcineurin signaling and show accelerated cardiomyopathy in response to pathological biomechanical stress. Nat Med 10, 1336–1343 (2004). https://doi.org/10.1038/nm1132

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1132

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing