Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy

Abstract

Sustained cardiac pressure overload induces hypertrophy and pathological remodeling, frequently leading to heart failure. Genetically engineered hyperstimulation of guanosine 3′,5′-cyclic monophosphate (cGMP) synthesis counters this response. Here, we show that blocking the intrinsic catabolism of cGMP with an oral phosphodiesterase-5A (PDE5A) inhibitor (sildenafil) suppresses chamber and myocyte hypertrophy, and improves in vivo heart function in mice exposed to chronic pressure overload induced by transverse aortic constriction. Sildenafil also reverses pre-established hypertrophy induced by pressure load while restoring chamber function to normal. cGMP catabolism by PDE5A increases in pressure-loaded hearts, leading to activation of cGMP-dependent protein kinase with inhibition of PDE5A. PDE5A inhibition deactivates multiple hypertrophy signaling pathways triggered by pressure load (the calcineurin/NFAT, phosphoinositide-3 kinase (PI3K)/Akt, and ERK1/2 signaling pathways). But it does not suppress hypertrophy induced by overexpression of calcineurin in vitro or Akt in vivo, suggesting upstream targeting of these pathways. PDE5A inhibition may provide a new treatment strategy for cardiac hypertrophy and remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of PDE5A with sildenafil prevents load-induced cardiac hypertrophy.
Figure 2: Inhibition of PDE5A with sildenafil reverses established cardiac hypertrophy.
Figure 3: In vivo heart function as shown by pressure-volume relations in sham controls (Con), controls treated with 3 weeks of sildenafil (3-wk Sil) or 3 weeks of TAC with or without sildenafil, and mice with hypertrophy induced by 1 week of TAC and then sildenafil added for 2 additional weeks (3 wk TAC + delay Sil 2 wk).
Figure 4: Enhanced PDE5A activity with hypertrophy amplifies the effect of sildenaRl on PKG-1 and stress-response proteins.
Figure 5: PDE5A inhibition with sildenafil prevents neonatal rat cardiomyocyte hypertrophy by means of the calcineurin-NFAT–dependent pathway.
Figure 6: Inactivation of Akt pathway by PDE5A inhibition.

Similar content being viewed by others

References

  1. Frey, N. & Olson, E.N. Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol. 65, 45–79 (2003).

    Article  CAS  Google Scholar 

  2. Frey, N., Katus, H.A., Olson, E.N. & Hill, J.A. Hypertrophy of the heart: a new therapeutic target? Circulation 109, 1580–1589 (2004).

    Article  Google Scholar 

  3. Bueno, O.F. et al. Impaired cardiac hypertrophic response in calcineurin A β-deficient mice. Proc. Natl. Acad. Sci. USA 99, 4586–4591 (2002).

    Article  CAS  Google Scholar 

  4. Matsui, T., Nagoshi, T. & Rosenzweig, A. Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle 2, 220–223 (2003).

    Article  CAS  Google Scholar 

  5. Antos, C.L. et al. Activated glycogen synthase-3 β suppresses cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. USA 99, 907–912 (2002).

    Article  CAS  Google Scholar 

  6. Kishimoto, I., Rossi, K. & Garbers, D.L. A genetic model provides evidence that the receptor for atrial natriuretic peptide (guanylyl cyclase-A) inhibits cardiac ventricular myocyte hypertrophy. Proc. Natl. Acad. Sci. USA 98, 2703–2706 (2001).

    Article  CAS  Google Scholar 

  7. Zahabi, A., Picard, S., Fortin, N., Reudelhuber, T.L. & Deschepper, C.F. Expression of constitutively active guanylate cyclase in cardiomyocytes inhibits the hypertrophic effects of isoproterenol and aortic constriction on mouse hearts. J. Biol. Chem. 278, 47694–47699 (2003).

    Article  CAS  Google Scholar 

  8. Fiedler, B. et al. Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes. Proc. Natl. Acad. Sci. USA 99, 11363–11368 (2002).

    Article  CAS  Google Scholar 

  9. Wollert, K.C. et al. Gene transfer of cGMP-dependent protein kinase I enhances the antihypertrophic effects of nitric oxide in cardiomyocytes. Hypertension 39, 87–92 (2002).

    Article  CAS  Google Scholar 

  10. Knowles, J.W. et al. Pressure-independent enhancement of cardiac hypertrophy in natriuretic peptide receptor A-deficient mice. J. Clin. Invest. 107, 975–984 (2001).

    Article  CAS  Google Scholar 

  11. Rybalkin, S.D., Yan, C., Bornfeldt, K.E. & Beavo, J.A. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ. Res. 93, 280–291 (2003).

    Article  CAS  Google Scholar 

  12. Francis, S.H., Turko, I.V. & Corbin, J.D. Cyclic nucleotide phosphodiesterases: relating structure and function. Prog. Nucleic Acid Res. Mol. Biol. 65, 1–52 (2001).

    CAS  PubMed  Google Scholar 

  13. Reffelmann, T. & Kloner, R.A. Therapeutic potential of phosphodiesterase 5 inhibition for cardiovascular disease. Circulation 108, 239–244 (2003).

    Article  Google Scholar 

  14. Goldstein, I. et al. Oral sildenafil in the treatment of erectile dysfunction. Sildenafil Study Group. N. Engl. J. Med. 338, 1397–1404 (1998).

    Article  CAS  Google Scholar 

  15. Sastry, B.K., Narasimhan, C., Reddy, N.K. & Raju, B.S. Clinical efficacy of sildenafil in primary pulmonary hypertension: a randomized, placebo-controlled, double-blind, crossover study. J. Am. Coll. Cardiol. 43, 1149–1153 (2004).

    Article  CAS  Google Scholar 

  16. Senzaki, H. et al. Cardiac phosphodiesterase 5 (cGMP-specific) modulates β-adrenergic signaling in vivo and is down-regulated in heart failure. FASEB J. 15, 1718–1726 (2001).

    Article  CAS  Google Scholar 

  17. Takimoto, E. et al. Cyclic GMP catabolism by PDE5A regulates cardiac adrenergic stimulation by NOS3-dependent mechanism. Circ. Res. 96, 100–109 (2005).

    Article  CAS  Google Scholar 

  18. Corbin, J. et al. Sildenafil citrate does not affect cardiac contractility in human or dog heart. Curr. Med. Res. Opin. 19, 747–752 (2003).

    Article  CAS  Google Scholar 

  19. Molkentin, J.D. et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93, 215–228 (1998).

    Article  CAS  Google Scholar 

  20. Semeniuk, L.M. et al. Time-dependent systolic and diastolic function in mice overexpressing calcineurin. Am. J. Physiol. Heart Circ. Physiol. 284, H425–H430 (2003).

    Article  CAS  Google Scholar 

  21. Bueno, O.F. & Molkentin, J.D. Involvement of extracellular signal-regulated kinases 1/2 in cardiac hypertrophy and cell death. Circ. Res. 91, 776–781 (2002).

    Article  CAS  Google Scholar 

  22. Minamino, T. et al. MEKK1 is essential for cardiac hypertrophy and dysfunction induced by Gq. Proc. Natl. Acad. Sci. USA 99, 3866–3871 (2002).

    Article  CAS  Google Scholar 

  23. Zou, Y. et al. Isoproterenol activates extracellular signal-regulated protein kinases in cardiomyocytes through calcineurin. Circulation 104, 102–108 (2001).

    Article  CAS  Google Scholar 

  24. Bueno, O.F. et al. The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J. 19, 6341–6350 (2000).

    Article  CAS  Google Scholar 

  25. Condorelli, G. et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc. Natl. Acad. Sci. USA 99, 12333–12338 (2002).

    Article  CAS  Google Scholar 

  26. Matsui, T. et al. Phenotypic spectrum caused by transgenic overexpression of activated Akt in the heart. J. Biol. Chem. 277, 22896–22901 (2002).

    Article  CAS  Google Scholar 

  27. Oudit, G.Y. et al. The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J. Mol. Cell Cardiol. 37, 449–471 (2004).

    Article  CAS  Google Scholar 

  28. Crackower, M.A. et al. Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways. Cell 110, 737–749 (2002).

    Article  CAS  Google Scholar 

  29. Patrucco, E. et al. PI3Kγ modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118, 375–387 (2004).

    Article  CAS  Google Scholar 

  30. Hardt, S.E. & Sadoshima, J. Glycogen synthase kinase-3β: a novel regulator of cardiac hypertrophy and development. Circ. Res. 90, 1055–1063 (2002).

    Article  CAS  Google Scholar 

  31. Juhaszova, M. et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J. Clin. Invest. 113, 1535–1549 (2004).

    Article  CAS  Google Scholar 

  32. Tanji, C. et al. A-kinase anchoring protein AKAP220 binds to glycogen synthase kinase-3β (GSK-3β) and mediates protein kinase A-dependent inhibition of GSK-3β. J. Biol. Chem. 277, 36955–36961 (2002).

    Article  CAS  Google Scholar 

  33. Shin, S.Y., Yoon, S.C., Kim, Y.H., Kim, Y.S. & Lee, Y.H. Phosphorylation of glycogen synthase kinase-3β at serine-9 by phospholipase Cγ1 through protein kinase C in rat 3Y1 fibroblasts. Exp. Mol. Med. 34, 444–450 (2002).

    Article  CAS  Google Scholar 

  34. Kim, D. et al. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation 104, 2338–2343 (2001).

    Article  CAS  Google Scholar 

  35. Ni, X.P., Safai, M., Rishi, R., Baylis, C. & Humphreys, M.H. Increased activity of cGMP-specific phosphodiesterase (PDE5) contributes to resistance to atrial natriuretic peptide natriuresis in the pregnant rat. J. Am. Soc. Nephrol. 15, 1254–1260 (2004).

    Article  CAS  Google Scholar 

  36. Rybalkin, S.D., Rybalkina, I.G., Shimizu-Albergine, M., Tang, X.B. & Beavo, J.A. PDE5 is converted to an activated state upon cGMP binding to the GAF A domain. EMBO J. 22, 469–478 (2003).

    Article  CAS  Google Scholar 

  37. Francis, S.H. et al. Phosphorylation of isolated human phosphodiesterase-5 regulatory domain induces an apparent conformational change and increases cGMP binding affinity. J. Biol. Chem. 277, 47581–47587 (2002).

    Article  CAS  Google Scholar 

  38. Massion, P.B., Feron, O., Dessy, C. & Balligand, J.L. Nitric oxide and cardiac function: ten years after, and continuing. Circ. Res. 93, 388–398 (2003).

    Article  CAS  Google Scholar 

  39. Champion, H.C. et al. Modulation of in vivo cardiac function by myocyte-specific nitric oxide synthase-3. Circ. Res. 94, 657–663 (2004).

    Article  CAS  Google Scholar 

  40. Holtwick, R. et al. Pressure-independent cardiac hypertrophy in mice with cardiomyocyte-restricted inactivation of the atrial natriuretic peptide receptor guanylyl cyclase-A. J. Clin. Invest. 111, 1399–1407 (2003).

    Article  CAS  Google Scholar 

  41. Oliver, P.M. et al. Hypertension, cardiac hypertrophy, and sudden death in mice lacking natriuretic peptide receptor A. Proc. Natl. Acad. Sci. USA 94, 14730–14735 (1997).

    Article  CAS  Google Scholar 

  42. Kotera, J., Grimes, K.A., Corbin, J.D. & Francis, S.H. cGMP-dependent protein kinase protects cGMP from hydrolysis by phosphodiesterase-5. Biochem. J. 372, 419–426 (2003).

    Article  CAS  Google Scholar 

  43. Pilz, R.B. & Casteel, D.E. Regulation of gene expression by cyclic GMP. Circ. Res. 93, 1034–1046 (2003).

    Article  CAS  Google Scholar 

  44. De Windt, L.J., Lim, H.W., Haq, S., Force, T. & Molkentin, J.D. Calcineurin promotes protein kinase C and c-Jun NH2-terminal kinase activation in the heart. Cross-talk between cardiac hypertrophic signaling pathways. J. Biol. Chem. 275, 13571–13579 (2000).

    Article  CAS  Google Scholar 

  45. De Windt, L.J. et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: an apoptosis-independent model of dilated heart failure. Circ. Res. 86, 255–263 (2000).

    Article  CAS  Google Scholar 

  46. Esposito, G. et al. Genetic alterations that inhibit in vivo pressure-overload hypertrophy prevent cardiac dysfunction despite increased wall stress. Circulation 105, 85–92 (2002).

    Article  CAS  Google Scholar 

  47. Wilkins, B.J. et al. Calcineurin/NFAT coupling participates in pathological, but not physiological, cardiac hypertrophy. Circ. Res. 94, 110–118 (2004).

    Article  CAS  Google Scholar 

  48. Michael, A. et al. Glycogen synthase kinase-3β regulates growth, calcium homeostasis, and diastolic function in the heart. J. Biol. Chem. 279, 21383–21393 (2004).

    Article  CAS  Google Scholar 

  49. Walker, D.K. et al. Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man. Xenobiotica 29, 297–310 (1999).

    Article  CAS  Google Scholar 

  50. Akao, M., Ohler, A., O'Rourke, B. & Marban, E. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ. Res. 88, 1267–1275 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Rosenzweig for Akt transgenic mice; J. Molkentin for the calcineurin adenoviral vector and F. Baber for the NFAT-reporter adenoviral vectors; and G. Dorn II for the oligonucleotide probes. This study was supported in part by National Institute of Health Grants PO1-HL59408, HL-47511 and AG18324, the Peter Belfer Laboratory for Heart Failure Research. (D.A.K.); a Uehara Memorial Foundation Grant; an American Heart Association (Mid-Atlantic Affiliate) Fellowship Grant (E.T.); a Shih-Chun Wang Young Investigator Award; a Giles F. Filley Award of the American Physiological Society; and the Bernard Family Foundation (H.C.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A Kass.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Free plasma concentration dose response curve to oral sildenafil in mice. (PDF 67 kb)

Supplementary Fig. 2

Inhibition of PDE5A by EMD360527 prevents load-induced cardiac hypertrophy, improves cardiac function, and reverses fetal gene expression changes. (PDF 153 kb)

Supplementary Fig. 3

Adenoviral transfection efficiency in neonatal myocytes. (PDF 334 kb)

Supplementary Fig. 4

NFAT activation assessed in neonatal myocytes transfected with an adenovirus coupling the NFAT promoter coupled to luciferase. (PDF 63 kb)

Supplementary Table 1

Effect of sildenafil treatment on serial echocardiographic measurements of left ventricular structure and function in conscious mice. (PDF 85 kb)

Supplementary Table 2

Effect of sildenafil treatment with and without TAC on in vivo cardiac hemodynamics obtained by pressure-volume analysis. (PDF 88 kb)

Supplementary Table 3

Hemodynamic analysis of non-transgenic controls (NTG) and transgenics with cardiac-targeted Akt overexpression (AktTG). (PDF 14 kb)

Supplementary Methods (PDF 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takimoto, E., Champion, H., Li, M. et al. Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11, 214–222 (2005). https://doi.org/10.1038/nm1175

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1175

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing