Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of lung injury and repair by Toll-like receptors and hyaluronan

Abstract

Mechanisms that regulate inflammation and repair after acute lung injury are incompletely understood. The extracellular matrix glycosaminoglycan hyaluronan is produced after tissue injury and impaired clearance results in unremitting inflammation. Here we report that hyaluronan degradation products require MyD88 and both Toll-like receptor (TLR)4 and TLR2 in vitro and in vivo to initiate inflammatory responses in acute lung injury. Hyaluronan fragments isolated from serum of individuals with acute lung injury stimulated macrophage chemokine production in a TLR4- and TLR2-dependent manner. Myd88−/− and Tlr4−/−Tlr2−/− mice showed impaired transepithelial migration of inflammatory cells but decreased survival and enhanced epithelial cell apoptosis after lung injury. Lung epithelial cell–specific overexpression of high-molecular-mass hyaluronan was protective against acute lung injury. Furthermore, epithelial cell–surface hyaluronan was protective against apoptosis, in part, through TLR-dependent basal activation of NF-κB. Hyaluronan-TLR2 and hyaluronan-TLR4 interactions provide signals that initiate inflammatory responses, maintain epithelial cell integrity and promote recovery from acute lung injury.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyaluronan fragments stimulate chemokine expression through both TLR4 and TLR2.
Figure 2: Impaired lung inflammatory cell recruitment but increased lung injury in the absence of TLR2 and TLR4.
Figure 3: TLRs and hyaluronan regulate lung cell apoptosis.
Figure 4: Blockade of hyaluronan function in vivo impairs lung inflammatory cell recruitment but worsens lung injury.
Figure 5: Overexpression of high-molecular-mass hyaluronan ameliorates lung injury in CC10-HAS2 transgenic mice.
Figure 6: Cell-surface hyaluronan protects epithelial cells from apoptosis through NF-κB.

Similar content being viewed by others

References

  1. Teder, P. et al. Resolution of lung inflammation by CD44. Science 296, 155–158 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Fraser, J.R., Laurent, T.C. & Laurent, U.B. Hyaluronan: its nature, distribution, functions and turnover. J. Intern. Med. 242, 27–33 (1997).

    Article  CAS  PubMed  Google Scholar 

  3. Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C.B. & Seed, B. CD44 is the principal cell surface receptor for hyaluronate. Cell 61, 1303–1313 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Termeer, C. et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J. Exp. Med. 195, 99–111 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor, K.R. et al. Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J. Biol. Chem. 279, 17079–17084 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Jameson, J.M., Cauvi, G., Sharp, L.L., Witherden, D.A. & Havran, W.L. {gamma}{delta} T cell-induced hyaluronan production by epithelial cells regulates inflammation. J. Exp. Med. 201, 1269–1279 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Adamson, I.Y. & Bowden, D.H. The pathogenesis of bloemycin-induced pulmonary fibrosis in mice. Am. J. Pathol. 77, 185–197 (1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bozic, C.R. et al. Expression and biologic characterization of the murine chemokine KC. J. Immunol. 154, 6048–6057 (1995).

    CAS  PubMed  Google Scholar 

  9. Heeckeren, A. et al. Excessive inflammatory response of cystic fibrosis mice to bronchopulmonary infection with Pseudomonas aeruginosa. J. Clin. Invest. 100, 2810–2815 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mehrad, B. et al. CXC chemokine receptor-2 ligands are necessary components of neutrophil-mediated host defense in invasive pulmonary aspergillosis. J. Immunol. 163, 6086–6094 (1999).

    CAS  PubMed  Google Scholar 

  11. Clark, J.M. & Lambertsen, C.J. Pulmonary oxygen toxicity: a review. Pharmacol. Rev. 23, 37–133 (1971).

    CAS  PubMed  Google Scholar 

  12. van Asbeck, B.S. et al. Protection against lethal hyperoxia by tracheal insufflation of erythrocytes: role of red cell glutathione. Science 227, 756–759 (1985).

    Article  CAS  PubMed  Google Scholar 

  13. Kawasaki, M. et al. Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am. J. Pathol. 157, 597–603 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuwano, K. et al. Attenuation of bleomycin-induced pneumopathy in mice by a caspase inhibitor. Am. J. Physiol. Lung Cell. Mol. Physiol. 280, L316–L325 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Mummert, M.E., Mohamadzadeh, M., Mummert, D.I., Mizumoto, N. & Takashima, A. Development of a peptide inhibitor of hyaluronan-mediated leukocyte trafficking. J. Exp. Med. 192, 769–779 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Camenisch, T.D. et al. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J. Clin. Invest. 106, 349–360 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhu, Z., Ma, B., Homer, R.J., Zheng, T. & Elias, J.A. Use of the tetracycline-controlled transcriptional silencer (tTS) to eliminate transgene leak in inducible overexpression transgenic mice. J. Biol. Chem. 276, 25222–25229 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Rice, W.R. et al. Maintenance of the mouse type II cell phenotype in vitro. Am. J. Physiol. Lung Cell. Mol. Physiol. 283, L256–L264 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Beg, A.A. & Baltimore, D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274, 782–784 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Van Antwerp, D.J., Martin, S.J., Kafri, T., Green, D.R. & Verma, I.M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274, 787–789 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, X.Y., Shimura, S., Masuda, T., Saitoh, H. & Shirato, K. Antisense oligonucleotides to NF-kappaB improve survival in bleomycin-induced pneumopathy of the mouse. Am. J. Respir. Crit. Care Med. 162, 1561–1568 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kuwano, K. et al. Essential roles of the Fas-Fas ligand pathway in the development of pulmonary fibrosis. J. Clin. Invest. 104, 13–19 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pierce, J.W. et al. Novel inhibitors of cytokine-induced IkappaBalpha phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272, 21096–21103 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Dai, Y. et al. Interruption of the NF-kappaB pathway by Bay 11–7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood 103, 2761–2770 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Noble, P.W., Lake, F.R., Henson, P.M. & Riches, D.W. Hyaluronate activation of CD44 induces insulin-like growth factor-1 expression by a tumor necrosis factor-alpha-dependent mechanism in murine macrophages. J. Clin. Invest. 91, 2368–2377 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hodge-Dufour, J. et al. Induction of IL-12 and chemokines by hyaluronan requires adhesion-dependent priming of resident but not elicited macrophages. J. Immunol. 159, 2492–2500 (1997).

    CAS  PubMed  Google Scholar 

  27. Albertine, K.H. et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am. J. Pathol. 161, 1783–1796 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chapman, H.A. Disorders of lung matrix remodeling. J. Clin. Invest. 113, 148–157 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Armstrong, L. et al. Expression of functional toll-like receptor-2 and -4 on alveolar epithelial cells. Am. J. Respir. Cell Mol. Biol. 31, 241–245 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  31. Luo, Y. & Prestwich, G.D. Synthesis and selective cytotoxicity of a hyaluronic acid-antitumor bioconjugate. Bioconjug. Chem. 10, 755–763 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Mascarenhas, M.M. et al. Low molecular weight hyaluronan from stretched lung enhances interleukin-8 expression. Am. J. Respir. Cell Mol. Biol. 30, 51–60 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Kawai, T., Adachi, O., Ogawa, T., Takeda, K. & Akira, S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11, 115–122 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443–451 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Takeuchi, O. et al. Cutting edge: role of Toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 169, 10–14 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    CAS  PubMed  Google Scholar 

  38. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740–745 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Horton, M.R., Burdick, M.D., Strieter, R.M., Bao, C. & Noble, P.W. Regulation of hyaluronan-induced chemokine gene expression by IL-10 and IFN-gamma in mouse macrophages. J. Immunol. 160, 3023–3030 (1998).

    CAS  PubMed  Google Scholar 

  40. Noble, P.W., McKee, C.M., Cowman, M. & Shin, H.S. Hyaluronan fragments activate an NF-kappa B/I-kappa B alpha autoregulatory loop in murine macrophages. J. Exp. Med. 183, 2373–2378 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank S. Akira (University of Osaka, Japan) for providing MyD88- and TLR-deficient mice, and J.A. McDonald (Mayo Clinic, Scottsdale, Arizona) for providing mouse Has2 cDNA. This work was supported by US National Institutes of Health grants HL57486 and AI52487 (to P.W.N.). G.D.P. acknowledges funding by a Department of Defense for a Breast Cancer Idea Award and by the Center for Cell Signaling at the University of Utah. The authors would like to acknowledge the contributions of J. Hodge (Yale University School of Medicine) for constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W Noble.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Hyaluronan fragment–induced chemokine expression is TLR2-, TLR4- and MyD88-dependent. (PDF 69 kb)

Supplementary Fig. 2

Hyaluronan fragment–induced chemokine expression is independent of TLR1, TLR3, TLR5 and TLR9. (PDF 64 kb)

Supplementary Fig. 3

Human hyaluronan fragment–induced chemokine expression is TLR2-, TLR4- and MyD88-dependent. (PDF 50 kb)

Supplementary Fig. 4

Specificity of hyaluronan-induced chemokine expression. (PDF 102 kb)

Supplementary Fig. 5

Effect of KC on inflammatory responses to bleomycin lung injury. (PDF 45 kb)

Supplementary Fig. 6

Impaired KC induction by bleomycin in Tlr2−/−Tlr4−/− epithelial cells. (PDF 37 kb)

Supplementary Fig. 7

Tlr2−/−Tlr4−/− mice are more susceptible to hyperoxia. (PDF 46 kb)

Supplementary Fig. 8

Effect of hyaluronan-blocking peptide on survival of mice with bleomycin injury. (PDF 44 kb)

Supplementary Methods (PDF 37 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, D., Liang, J., Fan, J. et al. Regulation of lung injury and repair by Toll-like receptors and hyaluronan. Nat Med 11, 1173–1179 (2005). https://doi.org/10.1038/nm1315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing