Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells

This article has been updated

Abstract

Truncated Notch receptors have transforming activity in vitro and in vivo. However, the role of wild-type Notch signaling in neoplastic transformation remains unclear. Ras signaling is deregulated in a large fraction of human malignancies and is a major target for the development of novel cancer treatments. We show that oncogenic Ras activates Notch signaling and that wild-type Notch-1 is necessary to maintain the neoplastic phenotype in Ras-transformed human cells in vitro and in vivo. Oncogenic Ras increases levels and activity of the intracellular form of wild-type Notch-1, and upregulates Notch ligand Delta-1 and also presenilin-1, a protein involved in Notch processing, through a p38-mediated pathway. These observations place Notch signaling among key downstream effectors of oncogenic Ras and suggest that it might be a novel therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Oncogenic Ras increases Notch-1 levels and activity.
Figure 2: Correlation between Ras overexpression and Notch-1 upregulation in breast cancer.
Figure 3: Inhibition of Notch-1 expression or activation in Ras-transformed cells inhibits the transformed phenotype in vitro and causes loss of tumorigenicity in vivo.
Figure 4: Oncogenic Ras increases Notch-1 processing and upregulates presenilin-1, Delta-1 and Notch-1 proteins.
Figure 5: Regulation of Notch signaling in BJ fibroblasts is mediated by p38.
Figure 6: NIC expression can partially substitute for oncogenic Ras and induces Notch-4.

Similar content being viewed by others

Change history

  • 30 August 2002

    This was incorrect in AOP version but corrected in print. Changed acknowledgements as per author's instructions.

References

  1. Artavanis-Tsakonas, S., Rand, M.D. & Lake, R.J. Notch signaling: Cell fate control and signal integration in development. Science 284, 770–776 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Osborne, B. & Miele, L. Notch and the immune system. Immunity 11, 653–663 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Struhl, G. & Adachi, A. Nuclear access and action of notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Ellisen, L.W. et al. TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66, 649–661 (1991).

    Article  CAS  PubMed  Google Scholar 

  5. Capobianco, A.J., Zagouras, P., Blaumueller, C.M., Artavanis-Tsakonas, S. & Bishop, J.M. Neoplastic transformation by truncated alleles of human NOTCH1/TAN1 and NOTCH2. Mol. Cell Biol. 17, 6265–6273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jeffries, S. & Capobianco, A.J. Neoplastic transformation by Notch requires nuclear localization. Mol. Cell Biol. 20, 3928–3941 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ronchini, C. & Capobianco, A.J. Induction of cyclin d1 transcription and cdk2 activity by notch(ic): Implication for cell cycle disruption in transformation by notch(ic). Mol. Cell Biol. 21, 5925–5934 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pear, W.S. et al. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. J. Exp. Med. 183, 2283–2291 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Callahan, R. & Raafat, A. Notch signaling in mammary gland tumorigenesis. J. Mammary. Gland. Biol. Neoplasia. 6, 23–36 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Hoemann, C.D., Beaulieu, N., Girard, L., Rebai, N. & Jolicoeur, P. Two distinct Notch1 mutant alleles are involved in the induction of T- cell leukemia in c-myc transgenic mice. Mol. Cell Biol. 20, 3831–3842 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zagouras, P., Stifani, S., Blaumueller, C.M., Carcangiu, M.L. & Artavanis-Tsakonas, S. Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc. Natl. Acad. Sci. USA 92, 6414–6418 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Daniel, B., Rangarajan, A., Mukherjee, G., Vallikad, E. & Krishna, S. The link between integration and expression of human papillomavirus type 16 genomes and cellular changes in the evolution of cervical intraepithelial neoplastic lesions. J. Gen. Virol. 78, 1095–1101 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Leethanakul, C. et al. Distinct pattern of expression of differentiation and growth-related genes in squamous cell carcinomas of the head and neck revealed by the use of laser capture microdissection and cDNA arrays. Oncogene 19, 3220–3224 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Rae, F.K., Stephenson, S.A., Nicol, D.L. & Clements, J.A. Novel association of a diverse range of genes with renal cell carcinoma as identified by differential display. Int. J. Cancer 88, 726–732 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Tohda, S. & Nara, N. Expression of Notch1 and Jagged1 proteins in acute myeloid leukemia cells. Leuk. Lymphoma 42, 467–472 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Jundt, F. et al. Activated Notch1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99, 3398–3403 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Bos, J.L. Ras oncogenes in human cancer: A review. Cancer Res. 49, 4682–4689 (1989).

    CAS  PubMed  Google Scholar 

  18. Hahn, W.C. et al. Creation of human tumour cells with defined genetic elements. Nature 400, 464–468 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Blaumueller, C.M., Qi, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Kao, H.Y. et al. A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes Dev. 12, 2269–2277 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schroeter, E.H., Kisslinger, J.A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 382–386 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Struhl, G. & Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. De Strooper, B. et al. A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518–522 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Wolthuis, R.M., de Ruiter, N.D., Cool, R.H. & Bos, J.L. Stimulation of gene induction and cell growth by the Ras effector Rlf. EMBO J. 16, 6748–6761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dievart, A., Beaulieu, N. & Jolicoeur, P. Involvement of Notch1 in the development of mouse mammary tumors. Oncogene 18, 5973–5981 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Malaney, S. & Daly, R.J. The ras signaling pathway in mammary tumorigenesis and metastasis. J. Mammary. Gland. Biol. Neoplasia 6, 101–113 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Gohring, U.J. et al. Immunohistochemical detection of H-ras protooncoprotein p21 indicates favorable prognosis in node-negative breast cancer patients. Tumour. Biol. 20, 173–183 (1999).

    Article  CAS  PubMed  Google Scholar 

  28. McLendon, C. et al. Cell-free assays for gamma-secretase activity. FASEB J. 14, 2383–2386 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Mumm, J.S. et al. A ligand-induced extracellular cleavage regulates gamma-secretase-like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Sanchez, I. et al. Role of SAPK/ERK kinase-1 in the stress-activated pathway regulating transcription factor c-Jun. Nature 372, 794–798 (1994).

    Article  CAS  PubMed  Google Scholar 

  31. Fitzgerald, K., Harrington, A. & Leder, P. Ras pathway signals are required for notch-mediated oncogenesis. Oncogene 19, 4191–4198 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Li, L. et al. Cloning, characterization, and the complete 56.8-kilobase DNA sequence of the human NOTCH4 gene. Genomics 51, 45–58 (1998).

    Article  PubMed  Google Scholar 

  33. Price, J.V., Savenye, E.D., Lum, D. & Breitkreutz, A. Dominant enhancers of Egfr in Drosophila melanogaster: Genetic links between the Notch and Egfr signaling pathways. Genetics 147, 1139–1153 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zecchini, V., Brennan, K. & Martinez-Arias, A. An activity of notch regulates JNK signalling and affects dorsal closure in drosophila. Curr. Biol. 9, 460–469 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Berset, T., Hoier, E.F., Battu, G., Canevascini, S. & Hajnal, A. Notch inhibition of RAS signaling through MAP kinase phosphatase LIP-1 during C. elegans vulval development. Science 291, 1055–1058 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Carmena, A. et al. Reciprocal regulatory interactions between the Notch and Ras signaling pathways in the Drosophila embryonic mesoderm. Dev. Biol. 244, 226–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Garces, C. et al. Notch-1 controls the expression of fatty acid-activated transcription factors and is required for adipogenesis. J. Biol. Chem. 272, 29729–29734 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. Yasutomo, K., Doyle, C., Fuchs, C., Miele, L. & Germain, R.N. The duration of antigen receptor signalling determines CD4+ versus CD8+ T-cell lineage fate. Nature 404, 506–510 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Nickoloff, B.J. et al. Jagged-1 mediated activation of Notch signaling induces complete maturation of human keratinocytes through NF-κB and PPAR-α. Cell Death Differ. 9, 842–855 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Carlesso, N., Aster, J.C., Sklar, J. & Scadden, D.T. Notch1-induced delay of human hematopoietic progenitor cell differentiation is associated with altered cell cycle kinetics. Blood 93, 838–848 (1999).

    CAS  PubMed  Google Scholar 

  41. Kopan, R., Nye, J.S. & Weintraub, H. The intracellular domain of mouse Notch: A constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development 120, 2385–2396 (1994).

    CAS  PubMed  Google Scholar 

  42. Shelly, L.L., Fuchs, C. & Miele, L. Notch-1 prevents apoptosis in murine erythroleukemia cells and is necessary for differentiation induced by hybrid polar drugs. J. Cell Biochem. 73, 164–175 (1999).

    Article  CAS  PubMed  Google Scholar 

  43. Jehn, B.M., Bielke, W., Pear, W.S. & Osborne, B.A. Protective effects of notch-1 on TCR-induced apoptosis. J. Immunol. 162, 635–638 (1999).

    CAS  PubMed  Google Scholar 

  44. Deftos, M.L., He, Y.-W., Ojata, E.W. & Bevan, M.J. Correlating Notch signaling with thymocyte maturation. Immunity 9, 777–786 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zentrich, E., Han, S.Y., Pessoa-Brandao, L., Butterfield, L. & Heasley, L.E. Collaboration of JNKs and ERKs in nerve growth factor regulation of the neurofilament light chain promoter in PC12 cells. J. Biol. Chem. 277, 4110–4118 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Kadesch for the CBF-1 reporter plasmid; L. Heasley for the constitutively active MKK6 plasmid; B. Nickoloff for the dominant-negative mutant Ras construct; J.L. Bos for the constitutively active Rlf-CAAX plasmid; T. Golde for the γ-secretase inhibitor; and M.P. Velders, B. Nickoloff and V. Chaturvedi for helpful suggestions and critical reading of this manuscript. This work was supported by the Illinois Department of Public Health and NIH RO1 CA 84065/01 (to L.M.), NIH RO1 CA/AI 78399 (to W.M.K.), NIH RO1 A47922 (to B.A.O.), and a Doris Duke Charitable Fund Clinical Scientist Award (to W.C.H.).

NOTE: The acknowledgements originally published in the AOP version of this article were incorrect. The acknowledgements now appear correctly online, in both the full text and PDF versions of the article. The acknowledgements also appear correctly in the print version. The authors regret this error.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Miele.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Department of Adult Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weijzen, S., Rizzo, P., Braid, M. et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Ras-transformed cells. Nat Med 8, 979–986 (2002). https://doi.org/10.1038/nm754

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm754

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing