Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Enhancement of nonlinear effects using photonic crystals

Abstract

The quest for all-optical signal processing is generally deemed to be impractical because optical nonlinearities are usually weak. The emerging field of nonlinear photonic crystals seems destined to change this view dramatically. Theoretical considerations show that all-optical devices using photonic crystal designs promise to be smaller than the wavelength of light, and to operate with bandwidths that are very difficult to achieve electronically. When created in commonly used materials, these devices could operate at powers of only a few milliwatts. Moreover, if these designs are combined with materials and systems that support electromagnetically induced transparency, operation at single-photon power levels could be feasible.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numerical simulation of a coupled-cavities waveguide.
Figure 2: Slow-light waveguide made from a 2D-periodic photonic crystal slab.
Figure 3: Optical bistability in a photonic crystal microcavity.
Figure 4: Numerical simulations of a two-defect photonic crystal device displaying optical bistability.
Figure 5: Photonic crystal optically bistable cross-switch.
Figure 6: Basics of EIT.

Similar content being viewed by others

References

  1. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  CAS  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  CAS  Google Scholar 

  3. Joannopoulos, J.D., Meade, R.D. & Winn, J.N. Photonic Crystals: Molding the Flow of Light (Princeton Univ. Press, Princeton, 1995).

    Google Scholar 

  4. Lin, S.Y. et al. A three-dimensional photonic crystal operating at infrared wavelengths. Nature 394, 251–253 (1998).

    Article  CAS  Google Scholar 

  5. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G. & Turberfield, A.J. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature 404, 53–56 (2000).

    Article  CAS  Google Scholar 

  6. Vlasov, Yu, A., Bo, X.-Z., Sturm, J.C. & Norris, D.J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    Article  CAS  Google Scholar 

  7. Sakoda, K. Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

    Book  Google Scholar 

  8. Johnson, S.G. & Joannopoulos, J.D. Photonic Crystals: The Road from Theory to Practice (Kluwer, Norwell, 2002).

    Google Scholar 

  9. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    Article  CAS  Google Scholar 

  10. Fan, S., Johnson, S.G., Joannopoulos, J.D., Manolatou, C. & Haus, H.A. Waveguide branches in photonic crystals. J. Opt. Soc. Am. B 18, 162–165 (2001).

    Article  CAS  Google Scholar 

  11. Chow, E., Lin, S.Y., Wendt, J.R., Johnson, S.G. & Joannopoulos, J.D. Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ = 1.55 μm wavelengths. Opt. Lett. 26, 286–288 (2001).

    Article  CAS  Google Scholar 

  12. Fan, S. et al. Theoretical analysis of channel drop tunneling processes. Phys. Rev. B 59, 15882–15892 (1999).

    Article  CAS  Google Scholar 

  13. Taflove, A. Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, 1995).

    Google Scholar 

  14. Bhat, N.A.R. & Sipe, J.E. Optical pulse propagation in nonlinear photonic crystals. Phys. Rev. E 64, 056604 (2001).

    Article  CAS  Google Scholar 

  15. Slusher, R.E. & Eggleton, B.J. Nonlinear Photonic Crystals (Springer, Berlin, 2003).

    Book  Google Scholar 

  16. Yariv, A., Xu, Y., Lee, R.K. & Scherer, A. Coupled-resonator opticalwaveguide: a proposal and analysis. Opt. Lett. 24, 711–713 (1999).

    Article  CAS  Google Scholar 

  17. Notomi, M. et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. Phys. Rev. Lett. 87, 253902 (2001).

    Article  CAS  Google Scholar 

  18. Soljačić, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002).

    Article  Google Scholar 

  19. Centeno, E. & Felbacq, D. Optical bistability in finite-size nonlinear bidimensional photonic crystals doped by a microcavity. Phys. Rev. B 62, R7683–R7686 (2000).

    Article  CAS  Google Scholar 

  20. Soljacčić, M., Ibanescu, M., Johnson, S.G., Fink, Y. & Joannopoulos, J.D. Optimal bistable switching in nonlinear photonic crystals. Phys. Rev. E 66, 055601R (2002).

    Article  Google Scholar 

  21. Mingaleev, S.F. & Kivshar, Y.S. Nonlinear transmission and light localization in photonic-crystal waveguides, J. Opt. Soc. Am. B 19, 2241–2249 (2002).

    Article  CAS  Google Scholar 

  22. Cowan, A.R. & Young, J.F. Optical bistability involving photonic crystal microcavities and Fano line shapes. Phys. Rev. E 68, 046606 (2003).

    Article  CAS  Google Scholar 

  23. Harris, S.E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (July 1997).

    Article  CAS  Google Scholar 

  24. Inoue, K. et al. Observation of small group velocity in two-dimensional AlGaAs-based photonic crystal slabs. Phys. Rev. B 65, 121308R (2002).

    Article  Google Scholar 

  25. Bayindir, M., Temelkuran, B. & Ozbay, E. Tight-binding description of the coupled defect modes in three-dimensional photonic crystals. Phys. Rev. Lett. 84, 2140–2143 (2000).

    Article  CAS  Google Scholar 

  26. Mookherjea, S. & Yariv, A. Second-harmonic generation with pulses in a coupled-resonator optical waveguide. Phys. Rev. E 65, 026607 (2002).

    Article  Google Scholar 

  27. Johnson, S.G., Villeneuve, P.R., Fan, S. & Joannopoulos, J.D. Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000).

    Article  CAS  Google Scholar 

  28. Islam, M.N. et al. Nonlinear spectroscopy near half-gap in bulk and quantum well GaAs/AlGaAs waveguides. J. Appl. Phys. 71, 1927–1935 (1992).

    Article  CAS  Google Scholar 

  29. Villeneuve, A., Yang, C.C., Stegeman, G.I., Lin, C. & Lin, H. Nonlinear refractive-index and two photon-absorption near half the band gap in AlGaAs. Appl. Phys. Lett. 62, 2465–2467 (1993).

    Article  CAS  Google Scholar 

  30. Saleh, B.E.A. & Teich, M.C. Fundamentals of Photonics (Wiley, New York, 1991).

    Book  Google Scholar 

  31. Gibbs, H.M. Optical Bistability: Controlling Light with Light (Academic, New York, 1985).

    Google Scholar 

  32. Heebner, J.E. & Boyd, R. Enhanced all-optical switching by use of a nonlinear fiber ring resonator. Opt. Lett. 24, 847–849 (1999).

    Article  CAS  Google Scholar 

  33. Yariv, A. Critical coupling and its control in optical waveguide-ring resonator systems. IEEE Photon. Technol. Lett. 14, 483–485 (2002).

    Article  Google Scholar 

  34. Fan, S., Villeneuve, P.R., Joannopoulos, J.D. & Haus, H.A. Channel drop tunneling through localized states. Phys. Rev. Lett. 80, 960–963 (1998).

    Article  CAS  Google Scholar 

  35. Soljacčić, M., Luo, C., Joannopoulos, J.D. & Fan, S. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637–639 (2003).

    Article  Google Scholar 

  36. Scalora, M., Dowling, J.P., Bloemer, M.J. & Bowden, C.M. The photonic band edge optical diode. J. Appl. Phys. 76, 2023–2026 (1994).

    Article  CAS  Google Scholar 

  37. Gallo, K., Assanto, G., Parameswaran, K.R. & Fejer, M.M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314–316 (2001).

    Article  CAS  Google Scholar 

  38. Johnson, S.G. et al. Elimination of crosstalk in waveguide intersections. Opt. Lett. 23, 1855–1857 (1998).

    Article  CAS  Google Scholar 

  39. Yanik, M.F., Fan, S., Soljacčić, M. & Joannopoulos, J.D. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt. Lett 28, 2506–2508 (2003).

    Article  Google Scholar 

  40. Foresi, J.S. et al. Photonic-bandgap microcavities in optical waveguides. Nature 390, 143–145 (1997).

    Article  CAS  Google Scholar 

  41. Yoshie, T., Vuckovic, J., Scherer, A., Chen, H. & Deppe, D. High quality two-dimensional photonic crystal slab cavities. Appl. Phys. Lett. 79, 4289–4291 (2001).

    Article  CAS  Google Scholar 

  42. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  CAS  Google Scholar 

  43. Hau, L.V., Harris, S.E., Dutton, Z. & Behroozi, C.H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  CAS  Google Scholar 

  44. Turukhin, A.V. et al. observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett. 88, 023602 (2002).

    Article  CAS  Google Scholar 

  45. Vuckovic, J., Loncar, M., Mabuchi, H. & Scherer, A. Design of photonic crystal microcavities for cavity QED. Phys. Rev. E 65, 016608 (2001).

    Article  Google Scholar 

  46. Werner, M.J. & Imamoglu, A. Photon-photon interactions in cavity electromagnetically induced transparency. Phys. Rev. A 61, 011801R (1999).

    Article  Google Scholar 

  47. Lukin, M.D., Fleischhauer, M., Scully, M.O. & Velichansky, V.L. Intracavity electromagnetically induced transparency. Opt. Lett. 23, 295–297 (1998).

    Article  CAS  Google Scholar 

  48. Winful, H.G., Marburger, J.H. & Garmire, E. Theory of bistability in nonlinear distributed feedback structures. Appl. Phys. Lett. 35, 379–381 (1979).

    Article  CAS  Google Scholar 

  49. Chen, W. & Mills, D.L. Gap solitons and the nonlinear optical response of superlattices. Phys. Rev. Lett. 58, 160–163 (1987).

    Article  CAS  Google Scholar 

  50. Mecozzi, A., Trillo, S. & Wabnitz, S. Spatial instabilities, all-optical limiting, and thresholding in nonlinear distributed-feedback devices. Opt. Lett. 12, 1008–1010 (1987).

    Article  CAS  Google Scholar 

  51. Christodoulides, D.N. & Joseph, R.I. Slow Bragg solitons in nonlinear periodic structures. Phys. Rev. Lett. 62, 1746–1749 (1989).

    Article  CAS  Google Scholar 

  52. de Sterke, C.M. & Sipe, J.E. Extensions and generalizations of an envelope-function approach for the electrodynamics of nonlinear periodic structures. Phys. Rev. A 39, 5163–5178 (1989).

    Article  Google Scholar 

  53. Russell, P.S.J. Bloch wave analysis of dispersion and pulse propagation in pure distributed feedback structures. J. Mod. Opt. 38, 1599–1619 (1991).

    Article  Google Scholar 

  54. Agrawal, G.P. & Dutta, N.K. Semiconductor Lasers 2nd edn (Van Nostrand Reinhold, New York, 1993).

    Google Scholar 

  55. Lidorikis, E., Busch, K., Li, Q., Chan, C.T. & Soukoulis, C.M. Optical nonlinear response of a single nonlinear dielectric layer sandwiched between two linear dielectric structures. Phys. Rev. B 56, 15090–15099 (1997).

    Article  CAS  Google Scholar 

  56. Emplit, P., Haelterman, M., Kashyap, R. & Lathouwer, M.D. Fiber Bragg grating for optical dark soliton generation. IEEE Photonic Tech. L. 9, 1122–1124 (1997).

    Article  Google Scholar 

  57. Peschel, T., Peschel, U., Lederer, F. & Malomed, B.A. Solitary waves in Bragg gratings with a quadratic nonlinearity. Phys. Rev. E 55, 4730–4739 (1997).

    Article  CAS  Google Scholar 

  58. Fiore, A., Berger, V., Rosencher, E., Bravetti, P. & Nagle, J. Phase matching using an isotropic nonlinear optical material. Nature 391, 463–466 (1998).

    Article  CAS  Google Scholar 

  59. Eisenberg, H.S., Silberberg, Y., Morandotti, R., Boyd, A.R. & Aitchison, J.S. Discrete spatial optical solitons in waveguide arrays. Phys. Rev. Lett. 81, 3383–3386 (1998).

    Article  CAS  Google Scholar 

  60. Clausen, C.B. & Torner, L. Spatial switching of quadratic solitons in engineered quasi-phase-matched structures. Opt. Lett. 24, 7–9 (1999).

    Article  CAS  Google Scholar 

  61. Sibilia, C. et al. Electromagnetic properties of periodic and quasi-periodic one-dimensional, metallo-dielectric photonic band gap structures. J. Opt. A–Pure Appl. Opt. 1, 490–494 (1999).

    Article  CAS  Google Scholar 

  62. Bowden, C.M. & Zheltikov, A.M. J. Opt. Soc. Am. 19 (Feature issue No. 9) Nonlinear Optics of Photonic Crystals (September 2002).

    Google Scholar 

  63. Broderick, N.G.R., Ross, G.W., Offerhaus, H.L., Richardson, D.J. & Hanna, D.C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000).

    Article  CAS  Google Scholar 

  64. Fleischer, J.W. et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices. Nature 422, 147–150 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Marin Soljačić would like to dedicate this article to the memory of his mother, Prof. Dr Marija Soljačić (1940–2003), for her enormous love and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marin SoljaČiĆ.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SoljaČiĆ, M., Joannopoulos, J. Enhancement of nonlinear effects using photonic crystals. Nature Mater 3, 211–219 (2004). https://doi.org/10.1038/nmat1097

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing