Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanostructured materials for advanced energy conversion and storage devices

Abstract

New materials hold the key to fundamental advances in energy conversion and storage, both of which are vital in order to meet the challenge of global warming and the finite nature of fossil fuels. Nanomaterials in particular offer unique properties or combinations of properties as electrodes and electrolytes in a range of energy devices. This review describes some recent developments in the discovery of nanoelectrolytes and nanoelectrodes for lithium batteries, fuel cells and supercapacitors. The advantages and disadvantages of the nanoscale in materials design for such devices are highlighted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Charge–discharge curves for nanostructured anode materials.
Figure 2: Electrochemical behaviour of bulk and nanostructured α-Fe2O3 with voltage–composition curves.
Figure 3: Transmission electron micrographs of regular and nanostructured spinel.
Figure 4: Capacity against cycling number for a lithium coin cell.
Figure 5: The structures of PEO6:LiAsF6.
Figure 6: Cycling performance of the new asymmetric hybrid C/nano-Li4Ti5O12 supercapacitor.
Figure 7: Calculated mass-averaged (a) and surface-averaged distributions (b) as a function of particle size in Pt particles with cubo-octahedral geometry.
Figure 8: Platinum-coated nanostructured whisker supports (0.25 mg cm−2).

Similar content being viewed by others

References

  1. Nazar, L. F. et al. Nanostructured materials for energy storage. Int. J. Inorg. Mater. 3, 191–200 (2001).

    CAS  Google Scholar 

  2. Hirshes, M. Nanoscale materials for energy storage. Mater. Sci. Eng. B 108, 1 (2004).

    Google Scholar 

  3. Scrosati, B. Challenge of portable power. Nature 373, 557–558 (1995).

    CAS  Google Scholar 

  4. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  5. Wakihara, W. & Yamamoto, O. (eds) Lithium Ion Batteries—Fundamentals and Performance (Kodansha-Wiley-VCH, Weinheim, 1998).

    Google Scholar 

  6. van Schalkwijk, W. & Scrosati, B. (eds) Advances in Lithium-Ion Batteries (Kluwer Academic/Plenum, New York, 2002).

    Google Scholar 

  7. Huggins, R. A. in Handbook of Battery Materials (ed. Besenhard, J. O.) Part III, Chapter 4 (Wiley-VCH, Weinheim, 1999).

    Google Scholar 

  8. Winter, M. & Besenhard, J. O. Electrochemical lithiation of tin and tin-based intermetallic and composites. Electrochim. Acta 45, 31–50 (1999).

    CAS  Google Scholar 

  9. Nazar, L. F. & Crosnier, O. In Lithium Batteries Science and Technology (eds Nazri,G.-A. & Pistoia, G.) 112–143 (Kluwer Academic/Plenum, Boston, 2004).

    Google Scholar 

  10. Idota, Y., Kabuto, T., Matsufuji, A., Maekawa, Y. & Miyasaki, T. Tin-based amorphous oxides: a high-capacity lithium-ion storage material. Science 276, 1395–1397 (1997).

    CAS  Google Scholar 

  11. Mao, O. & Dahn, J. R. Mechanically alloyed Sn–Fe(–C) powders as anode materials for Li ion batteries. III. Sn2Fe:SnFe3C active/inactive composites. J. Electrochem. Soc. 146, 423–427 (1999).

    CAS  Google Scholar 

  12. Beaulieu, L. Y. & Dahn, J. R. The reaction of lithium with Sn–Mn–C intermetallics prepared by mechanical alloying. J. Electrochem. Soc. 147, 3237–3241 (2000).

    CAS  Google Scholar 

  13. Graetz, J., Ahn, C. C., Yazami, R. & Fuetz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6, A194–197 (2003).

    CAS  Google Scholar 

  14. Yang, J. et al. Si/C composites for high capacity lithium storage materials. Electrochem. Solid-State Lett. 6, A154–156 (2003).

    CAS  Google Scholar 

  15. Novak, P. et al. in Int. Meeting Li Batteries IMLB12 Nara, Japan Abstract 9 (2004).

    Google Scholar 

  16. Ikeda, H. et al. in Proc. 42nd Battery Symposium, Yokohama, Japan 282 (2001).

    Google Scholar 

  17. Green, M., Fielder, E., Scrosati, B., Wachtler, M. & Serra Moreno, J. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6, A75–79 (2003).

    CAS  Google Scholar 

  18. Armstrong, A. R., Armstrong, G., Canales, Garcia, J. R. & Bruce, P. G. Lithium intercalation intoTiO2-B nanowires. Adv. Mater. (in the press).

  19. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. & Tarascon, J.-M. Nano-sized transition metal oxides as negative electrode material for lithium-ion batteries. Nature 407, 496–499 (2000).

    CAS  Google Scholar 

  20. Tarascon, J.-M., Grugeon, S., Laruelle, S., Larcher, D. & Poizot, P. In Lithium Batteries Science and Technology (eds Nazri, G.-A. & Pistoia, G.) Ch. 7, 220–246 (Kluwer Academic/Plenum, Boston, 2004).

    Google Scholar 

  21. Denis, S., Baudrin, E., Touboul, M. & Tarascon, J.-M. Synthesis and electrochemical properties vs. Li of amorphous vanadates of general formula RVO4 (R = In, Cr, Fe, Al, Y) J. Electrochem. Soc. 144, 4099–4109 (1997).

    CAS  Google Scholar 

  22. Leroux, F., Coward, G. R., Power, W. P. & Nazar, L. F. Understanding the nature of low-potential Li uptake into high volumetric capacity molybedenum oxides. Electrochem Solid-State Lett. 1, 255–258 (1998).

    CAS  Google Scholar 

  23. Balaya, P., Li, H., Kienle, L. & Maier, J. Fully reversible homogeneous Li storage in RuO2 with high capacity. Adv. Funct. Mater. 13, 621–625 (2003).

    CAS  Google Scholar 

  24. Badway, F., Cosandey, F., Pereira, N. & Amatucci, G. G. Carbon metal fluoride nanocomposites: high capacity reversible metal fluoride conversion materials as rechargeable positive electrodes for Li batteries. J. Electrochem. Soc. 150, A1318–1327 (2003).

    CAS  Google Scholar 

  25. Li, H., Ritcher, G. & Maier, J. Reversibile formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries. Adv. Mater. 15, 736–739 (2003).

    CAS  Google Scholar 

  26. Jamnik, J., & Maier, J. Nanocrystallinity effects in lithium battery materials. Aspects of nano-ionics. Part IV. Phys. Chem. Chem. Phys. 5, 5215–5220 (2003).

    CAS  Google Scholar 

  27. Larcher, D. et al. Effect of particle size on lithium intercalation into α-Fe2O3 . J. Electrochem. Soc. 150, A133–139 (2003).

    CAS  Google Scholar 

  28. Sides, C. R., Li, N. C., Patrissi, C. J., Scrosati, B. & Martin, C. R. Nanoscale materials for lithium-ion batteries. Mater. Res. Bull. 27, 604–607 (2002).

    CAS  Google Scholar 

  29. Nordliner, S., Edström, K. & Gustafsson, T. Electrochemistry of vanadium oxide nanotubes. Electrochem. Solid State Lett. 4, A129 (2001).

    Google Scholar 

  30. Le, D. B. et al. High surface area V2O5 aerogel intercalation electrodes. J. Electrochem. Soc. 143, 2099–2104 (1996).

    CAS  Google Scholar 

  31. Dong, W., Rolison, D. R. & Dunn, B. Electrochemical properties of high surface area vanadium oxides aerogels. Electrochem. Solid State Lett. 3, 457–459 (2000).

    CAS  Google Scholar 

  32. Thackeray, M. M., David, W. I. F., Bruce, P. G. & Goodenough, J. B. Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461–472 (1983).

    CAS  Google Scholar 

  33. Robertson, A. D., Armstrong, A. R. & Bruce, P. G. Layered LixMnyCo1–yO2 intercalation electrodes: influence of ion exchange on capacity and structure upon cycling. Chem. Mater. 13, 2380–2386 (2001).

    CAS  Google Scholar 

  34. Shao-Horn, Y. et al. Structural characterisation of layered LiMnO2 electrodes by electron diffraction and lattice imaging. J. Electrochem. Soc. 146, 2404–2412 (1999).

    CAS  Google Scholar 

  35. Wang, H. F., Jang, Y. I. & Chiang, Y.-M. Origin of cycling stability in monoclinic and orthorhombic-phase lithium manganese oxide cathodes. Electrochem. Solid-State Lett. 2, 490–493 (1999).

    CAS  Google Scholar 

  36. Kang, S. H., Goodenough, J. B. & Rabenberg, L. K. Effect of ball-milling on 3 V capacity of lithium manganese oxospinel cathodes. Chem. Mater. 13, 1758–1764 (2001).

    CAS  Google Scholar 

  37. Reed, J., Ceder, G. & van der Ven, A. Layered-to-spinel phase transformation in LixMnO2 . Electrochem. Solid-State Lett. 4, A78–81 (2001).

    CAS  Google Scholar 

  38. Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997).

    CAS  Google Scholar 

  39. Ravet, A. et al. Electroactivity of natural and synthetic triphylite. J. Power Sources 97–98, 503–507 (2001).

    Google Scholar 

  40. Huang, H., Yin, S.-C. & Nazar, L. F. Approaching theoretical capacity of LiFePO4 at room temperature and high rates. Electrochem. Solid-State Lett. 4, A170–172 (2001).

    CAS  Google Scholar 

  41. Croce, F., Scrosati, B., Sides, B. R. & Martin, C. R. in 206th Meeting Electrochemical Society, Honolulu, Hawaii Abstract 241 (2004).

    Google Scholar 

  42. Scrosati, B. & Vincent, C. A. Polymer electrolytes: the key to lithium polymer batteries. Mater. Res. Soc. Bull. 25, 28–30 (2000).

    CAS  Google Scholar 

  43. Croce, F., Appetecchi, G. B., Persi, L. & Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998).

    CAS  Google Scholar 

  44. MacFarlane, D. R., Newman, P. J., Nairn, K. M. & Forsyth, M. Lithium-ion conducting ceramic/polyether composites. Electrochim. Acta 43, 1333–1337 (1998).

    CAS  Google Scholar 

  45. Kumar, B., Rodrigues, S. J. & Scanlon, L. Ionic conductivity of polymer–ceramic composites. J. Electrochem. Soc. 148, A1191–1195 (2001).

    CAS  Google Scholar 

  46. Maier, J. Ionic conduction in space charge regions. Prog. Solid State Chem. 23, 171–263 (1995).

    CAS  Google Scholar 

  47. Appetecchi, G. B., Croce, F., Persi, L., Ronci, F. & Scrosati, B. Transport and interfacial properties of composite polymer electrolytes. Electrochim. Acta 45, 1481–1490 (2000).

    CAS  Google Scholar 

  48. Angell, C. A., Liu, C. & Sanchez, S. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity. Nature 362, 137–139 (1993).

    CAS  Google Scholar 

  49. Hawett, P. C., MacFarlane, D. R. & Hollenkamp, A. F. High lithium metal cycling efficiency in a room-temperature ionic liquid. Electrochem. Solid-State Lett. 7, A97–101 (2004).

    Google Scholar 

  50. MacGlashan, G., Andreev, Y. G. &. Bruce, P. G. The structure of poly(ethylene oxide)6:LiAsF6 . Nature 398, 792–794 (1999).

    CAS  Google Scholar 

  51. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

    CAS  Google Scholar 

  52. Stoeva, Z., Martin-Litas, I., Staunton, E., Andreev Y. G. & Bruce, P. G. Ionic conductivity in the crystalline polymer electrolytes PEO6:LiXF6, X = P, As, Sb. J. Am. Chem. Soc. 125, 4619–2626 (2003).

    CAS  Google Scholar 

  53. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    CAS  Google Scholar 

  54. Conway, B. E. Electrochemical Supercapacitors. (Kluwer Academic/Plenum, New York, 1999).

    Google Scholar 

  55. Mastragostino, M., Arbizzani, C. & Soavi, F. In Advances in Lithium-Ion Batteries. (Van Schalkwijk, W. & Scrosati, B., eds) Ch. 16, 481–505 (Kluwer Academic/Plenum, New York, 2002).

    Google Scholar 

  56. Arbizzani, C., Mastragostino, M. & Soavi, S. New trends in electrochemical supercapacitors. J. Power Sources 100, 164–170 (2001).

    CAS  Google Scholar 

  57. Wang, J. et al. Morphological effects on the electrical and electrochemical properties of carbon aerogels. J. Electrochem. Soc. 148, D75–77 (2001).

    CAS  Google Scholar 

  58. Niu, C., Sichjel, E. K., Hoch, R., Hoi, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480–1482 (1997).

    CAS  Google Scholar 

  59. Nelson, P. A. & Owen, J. R. A high-performance supercapacitor/battery hybrid incorporating templated mesoporous electrodes. J. Electrochem. Soc. 150, A1313–1317 (2003).

    CAS  Google Scholar 

  60. Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930–939 (2001).

    CAS  Google Scholar 

  61. Brodd, R. J. et al. Batteries 1977 to 2002. J. Electrochem. Soc. 151, K1–11 (2004).

    CAS  Google Scholar 

  62. Srinivasan, S., Mosdale, R., Stevens, P. & Yang, C. Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century. Annu. Rev. Energy Environ. 24, 281–238 (1999).

    Google Scholar 

  63. Giordano, N. et al. Analysis of platinum particle size and oxygen reduction in phosphoric acid. Electrochim. Acta 36, 1979–1984 (1991).

    CAS  Google Scholar 

  64. Freund, A., Lang, J., Lehman, T. & Starz, K. A. Improved Pt alloy catalysts for fuel cells. Catal. Today 27, 279–283 (1996).

    CAS  Google Scholar 

  65. Mukerjee, S., Srinivasan, S., Soriaga, M. P. & McBreen, J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. An in-situ XANES and EXAFS investigation. J. Electrochem. Soc. 142, 1409–1422 (1995).

    CAS  Google Scholar 

  66. Aricò, A. S., Srinivasan, S. & Antonucci, V. DMFCs: From fundamental aspects to technology development. Fuel Cells 1, 133–161 (2001).

    Google Scholar 

  67. Schmidt, T. J. et al. Electrocatalytic activity of Pt–Ru alloy colloids for CO and CO/H2 electrooxidation: stripping voltammetry and rotating-disk measurements. Langmuir 14, 2591–2595 (1997).

    Google Scholar 

  68. Chrzanowski, W. & Wieckowski, A. Enhancement in methanol oxidation by spontaneously deposited ruthenium on low-index platinum-electrodes. Catal. Lett. 50, 69–75 (1998).

    CAS  Google Scholar 

  69. Brankovic, S. R., Wang, J. X. & Adzic, R. R. Pt submonolayers on Ru nanoparticles–a novel low Pt loading, high CO tolerance fuel-cell electrocatalyst. Electrochem. Solid-State Lett. 4, A217–220 (2001).

    CAS  Google Scholar 

  70. Hockaday, R. G. et al. in Proc. Fuel Cell Seminar, Portland, Oregon, USA 791–794 (Courtesy Associates, Washington DC, 2000).

    Google Scholar 

  71. Sun, G. R., Wang, J. T. & Savinell, R. F. Iron(III) tetramethoxyphenylporphyrin (Fetmpp) as methanol tolerant electrocatalyst for oxygen reduction in direct methanol fuel-cells. J. Appl. Electrochem. 28, 1087–1093 (1998).

    CAS  Google Scholar 

  72. Reeve, R. W., Christensen, P. A., Hamnett, A., Haydock, S. A. & Roy, S. C. Methanol tolerant oxygen reduction catalysts based on transition metal sulfides. J. Electrochem. Soc. 145, 3463–3471 (1998).

    CAS  Google Scholar 

  73. Nolte, R., Ledjeff, K., Bauer, M. & Mulhaupt, R. Partially sulfonated poly(arylene ether sulfone)—a versatile proton conducting membrane material for modern energy conversion technologies. J. Membrane Sci. 83, 211–220 (1993).

    CAS  Google Scholar 

  74. Kerres, J., Ullrich, A., Meier, F. & Haring, T. Synthesis and characterization of novel acid-base polymer blends for application in membrane fuel cells. Solid State Ionics 125, 243–249 (1999).

    CAS  Google Scholar 

  75. Alberti, G. & Casciola, M. Composite membranes for medium-temperature PEM fuel cells. Annu. Rev. Mater. Res. 33, 129–154 (2003).

    CAS  Google Scholar 

  76. Savadogo, O. Emerging membranes for electrochemical systems: (I) solid polymer electrolyte membranes for fuel cell systems. J. New Mater. Electrochem. Syst. 1, 47–66 (1998).

    CAS  Google Scholar 

  77. Li, Q., He, R., Jensen, J. O. & Bjerrum, N. J. Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem. Mater. 15, 4896–4815 (2003).

    CAS  Google Scholar 

  78. Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membrane Sci. 185, 29–39 (2001).

    CAS  Google Scholar 

  79. Watanabe, M., Uchida, H., Seki, Y., Emori, M. & Stonehart, P. Self-humidifying polymer electrolyte membranes for fuel cells. J. Electrochem. Soc. 143, 3847–3852 (1996).

    CAS  Google Scholar 

  80. Aricò, A. S., Creti, P., Antonucci, P. L. & Antonucci, V. Comparison of ethanol and methanol oxidation in a liquid feed solid polymer electrolyte fuel cells at high temperature. Electrochem. Solid-State Lett. 1, 66–68 (1998).

    Google Scholar 

  81. Aricò, A. S., Baglio, V., Di Blasi, A. & Antonucci, V. FTIR spectroscopic investigation of inorganic fillers for composite DMFC membranes. Electrochem. Commun. 5, 862–866 (2003).

    Google Scholar 

  82. Kreuer, K. D., Paddison, S. J., Spohr, E. & Schuster, M. Transport in proton conductors for fuel cell applications: simulation, elementary reactions and phenomenology. 104, 4637–4678 (2004).

  83. Kreuer, K. D. On the development of proton conducting materials for technological applications. Solid State Ionics 97, 1–15 (1997).

    CAS  Google Scholar 

  84. Debe, M. K. Handbook of Fuel Cells—Fundamentals, Technology and Applications Vol. 3 (eds Vielstich, W., Gasteiger, H. A. & Lamm, A.) Ch. 45, 576–589 (Wiley, Chichester, UK, 2003).

    Google Scholar 

  85. Atanasoski, R. in 4th Int. Conf. Applications of Conducting Polymers, ICCP-4, Como, Italy Abstract 22 (2004).

    Google Scholar 

  86. Schoonman, J. Nanoionics. Solid State Ionics 157, 319–326 (2003).

    CAS  Google Scholar 

  87. Steele, B. C. H. Current status of intermediate temperature fuel cells (It-SOFCs). European Fuel Cell News 7, 16–19 (2000).

    Google Scholar 

  88. Maier, J. Defect chemistry and ion transport in nanostructured materials. Part II Aspects of nanoionics. Solid State Ionics 157, 327–334 (2003).

    CAS  Google Scholar 

  89. Knauth, P. & Tuller, H. L. Solid-state ionics: roots, status, and future-prospects. J. Am. Ceram. Soc. 85, 1654–1680 (2002).

    CAS  Google Scholar 

  90. Perry Murray, E., Tsai, T. & Barnett, S. A. A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999).

    Google Scholar 

  91. Park, S., Vohs, J. M. & Gorte, R. J. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000).

    CAS  Google Scholar 

  92. Zhou, Y. P., Feng, K., Sun, Y. & Zhou, L. A brief review on the study of hydrogen storage in terms of carbon nanotubes. Prog. Chem. 15, 345–350 (2003).

    CAS  Google Scholar 

  93. Schlappach, L. & Zuttel, A. Hydrogen-storage materials for mobile applications. Nature 414, 353–358 (2001).

    Google Scholar 

  94. Dillon, A. C. et al. Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377–379 (1997).

    CAS  Google Scholar 

  95. Chambers, A., Park, C., Baker, R. T. K. & Rodriguez, N. M. Hydrogen storage in graphite nanofibers. J. Phys. Chem. 102, 4253–4256 (1998).

    CAS  Google Scholar 

  96. Yang, R. T. Hydrogen storage by alkali-doped carbon nanotubes—revisited. Carbon 38, 623–626 (2000).

    CAS  Google Scholar 

  97. Dillon, A. C. & Heben, M. J. Hydrogen Storage using carbon adsorbents—past, present and future. Appl. Phys. A 72, 133–142 (2001).

    CAS  Google Scholar 

  98. Hirscher, M. & Becher, M. Hydrogen storage in carbon nanotubes. J. Nanosci. Nanotechnol. 3, 3–17 (2003).

    CAS  Google Scholar 

  99. Shang, C. X., Bououdina, M., Song, Y. & Guo, Z. X. Mechanical alloying and electronic simulation of MgH2–M systems (M–Al, Ti, Fe, Ni, Cu, and Nb) for hydrogen storage. Int. J. Hydrogen Energy 29, 73–80 (2004).

    CAS  Google Scholar 

  100. Bobet, J. L., Grigorova, E., Khrussanova, M., Khristov, M. & Peshev, P. Hydrogen sorption properties of the nanocomposite 90wt.% Mg2Ni–10 wt.% V. J. Alloys Compounds 356, 593–597 (2003).

    Google Scholar 

  101. Ma, R. Z. et al. Synthesis of boron-nitride nanofibers and measurement of their hydrogen uptake capacity. Appl. Phys. Lett. 81, 5225–5227 (2002).

    CAS  Google Scholar 

  102. Bobet, J. L., Desmoulinskrawiec, S., Grigorova, E., Cansell, F. & Chevalier, B. Addition of nanosized Cr2O3 to magnesium for improvement of the hydrogen sorption properties. J. Alloys Compounds 351, 217–221 (2003).

    CAS  Google Scholar 

  103. Audemer, A., Wurm, C., Morcrette, M., Gwizdala, S. & Masquellier, C. Carbon-coated metal bearing powders and process for production thereof. World Patent WO 04/001881 A2 (2004).

Download references

Acknowledgements

We thank M. Mastragostino of the university of Bologna for suggestions and help in completing the supercapacitors part of this review. Support from the European Network of Excellence 'ALISTORE' network is acknowledged. P.G.B. is indebted to the Royal Society for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Scrosati.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aricò, A., Bruce, P., Scrosati, B. et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater 4, 366–377 (2005). https://doi.org/10.1038/nmat1368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1368

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing