Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical gain and stimulated emission in periodic nanopatterned crystalline silicon

Abstract

Persistent efforts have been made to achieve efficient light emission from silicon1,2,3,4,5,6,7 in the hope of extending the reach of silicon technology into fully integrated optoelectronic circuits, meeting the needs for high-bandwidth intrachip and interchip connects8. Enhanced light emission from silicon is known to be theoretically possible9,10, enabled mostly through quantum-confinement effects2,3,4. Furthermore, Raman-laser conversion was demonstrated in silicon waveguides11,12. Here we report on optical gain and stimulated emission in uniaxially nanopatterned silicon-on-insulator using a nanopore array as an etching mask13. In edge-emission measurements, we observed threshold behaviour, optical gain, longitudinal cavity modes and linewidth narrowing, along with a collimated far-field pattern, all indicative of amplification and stimulated emission14,15,16,17. The sub-bandgap 1,278 nm emission peak is attributed to A-centre mediated phononless direct recombination between trapped electrons and free holes18,19,20. The controlled nanoscale silicon engineering, combined with the low material loss in this sub-bandgap spectral range and the long electron lifetime in such A-type trapping centres, gives rise to the measured optical gain and stimulated emission and provides a new pathway to enhance light emission from silicon.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Edge-emission spectra and nanopatterned-silicon structure.
Figure 2: Evolution of the edge-emission intensity of the 1,278 nm line as a function of pump power.
Figure 3: Spectral features of the 1,278-nm edge-emission line.
Figure 4: Optical gain at 1,278 nm and lateral far-field pattern.

Similar content being viewed by others

References

  1. Pavesi, L., Gaponenko, S. & Dal Negro, L. Towards the First Silicon Laser (Kluwer Academic, Dordrecht, 2003).

    Book  Google Scholar 

  2. Pavesi, L., Dal Negro, L., Mazzoleni, C., Franzo, G. & Priolo, F. Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000).

    Article  Google Scholar 

  3. Wilson, W. L., Szajowski, P. F. & Brus, L. Quantum confinement in size-selected surface-oxidized silicon nanocrystals. Science 262, 1242–1244 (1993).

    Article  Google Scholar 

  4. Lu, Z., Lockwood, D. J. & Baribeau, J. Quantum confinement and light emission in SiO2/Si superlattices. Nature 378, 258–260 (1995).

    Article  Google Scholar 

  5. Green, M. A., Zhao, J., Wang, A., Reece, P. J. & Gal, M. Efficient silicon light-emitting diodes. Nature 412, 805–808 (2001).

    Article  Google Scholar 

  6. Ng, W. L. et al. An efficient room-temperature silicon-based light-emitting diode. Nature 410, 192–194 (2001).

    Article  Google Scholar 

  7. Chen, M. J. et al. Stimulated emission in nanostructured silicon pn junction diode using current injection. Appl. Phys. Lett. 84, 2163–2165 (2004).

    Article  Google Scholar 

  8. Salib, M. et al. Silicon photonics. Intel. Tech. J. 8, 143–160 (2004).

    Google Scholar 

  9. Landsberg, P. T. Radiative decay in compound semiconductors. Solid State Electron. 10, 513–537 (1967).

    Article  Google Scholar 

  10. Trupke, T., Green, M. A. & Würfel, P. Optical gain in materials with indirect transitions. J. Appl. Phys. 93, 9058–9061 (2003).

    Article  Google Scholar 

  11. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 5269–5273 (2004).

    Article  Google Scholar 

  12. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  Google Scholar 

  13. Liang, J., Chik, H., Yin, A. & Xu, J. Two-dimensional lateral superlattices of nanostructures: Nanolithographic formation by anodic membrane template. J. Appl. Phys. 91, 2544–2546 (2002).

    Article  Google Scholar 

  14. Quist, T. M. et al. Semiconductor maser of GaAs. Appl. Phys. Lett. 1, 91–92 (1962).

    Article  Google Scholar 

  15. Shaklee, K. L., Nahory, R. E. & Leheny, R. F. Optical gain in semiconductors. J. Lumin. 7, 284–309 (1973).

    Article  Google Scholar 

  16. Dingle, R., Shaklee, K. L., Leheny, R. F. & Zetterstrom, R. B. Stimulated emission and laser action in gallium nitride. Appl. Phys. Lett. 19, 5–7 (1971).

    Article  Google Scholar 

  17. Siegman, A. E. Lasers (University Science Books, Susalito, 1986).

    Google Scholar 

  18. Spry, R. J. & Compton, W. D. Recombination luminescence in irradiated silicon. Phys. Rev. 175, 1010–1020 (1968).

    Article  Google Scholar 

  19. Yukhnevich, A. V. The structure of the spectrum of the radiative capture of holes by A-centers in silicon. Sov. Phys. Solid State 7, 259–261 (1965).

    Google Scholar 

  20. Jones, C. E., Johnson, E. S., Compton, W. D., Noonan, J. R. & Streetman, B. G. Temperature, stress, and annealing effects on the luminescence from electron-irradiated silicon. J. Appl. Phys. 44, 5402–5410 (1973).

    Article  Google Scholar 

  21. Pokrovskii, Y. Condensation of non-equilibrium charge carriers in semiconductors. Phys. Status Solidi A 11, 385–410 (1972).

    Article  Google Scholar 

  22. Vouk, M. A. & Lightowlers, E. C. Two-phonon assisted free exciton recombination radiation from intrinsic silicon. J. Phys. C 10, 3689–3698 (1977).

    Article  Google Scholar 

  23. Suematsu, Y. & Adams, A. R. Handbook of Semiconductor Lasers and Photonic Integrated Circuits (Chapman and Hall, London, 1994).

    Google Scholar 

  24. Henry, C. H. Theory of linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).

    Article  Google Scholar 

  25. Fleming, M. W. & Mooradian, A. Fundamental line broadening of single-mode (GaAl)As diode lasers. Appl. Phys. Lett. 38, 511–513 (1981).

    Article  Google Scholar 

  26. Dal Negro, L., Bettotti, P., Cazzanelli, M., Pacifici, D. & Pavesi, L. Applicability conditions and experimental analysis of the variable stripe length method for gain measurements. Opt. Commun. 229, 337–348 (2004).

    Article  Google Scholar 

  27. Dal Negro, L. et al. Stimulated emission in plasma-enhanced chemical vapour deposited silicon nanocrystals. Physica E 16, 297–308 (2003).

    Article  Google Scholar 

  28. Ruan, J., Fauchet, P. M., Dal Negro, L., Cazzanelli, M. & Pavesi, L. Stimulated emission in nanocrystalline silicon superlattices. Appl. Phys. Lett. 83, 5479–5481 (2003).

    Article  Google Scholar 

  29. Johnson, L. F., Boyd, G. D., Nassau, K. & Soden, R. R. Continuous operation of a solid-state optical maser. Phys. Rev. 126, 1406–1409 (1962).

    Article  Google Scholar 

  30. Lupu, A. et al. Experimental evidence for superprism phenomena in SOI photonic crystals. Opt. Express 12, 5690–5696 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the timely and enabling support from ONR and DARPA. S.G.C. and J.X. are also grateful to NSERC and the Guggenheim Foundation, respectively, for the fellowship support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jimmy Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cloutier, S., Kossyrev, P. & Xu, J. Optical gain and stimulated emission in periodic nanopatterned crystalline silicon. Nature Mater 4, 887–891 (2005). https://doi.org/10.1038/nmat1530

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1530

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing