Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Current-induced magnetization reversal in nanopillars with perpendicular anisotropy

Abstract

Devices that show a magnetic anisotropy normal to the film surface hold great promise towards faster and smaller magnetic bits in data-storage applications. We describe an experimental demonstration of current-induced magnetic reversal of nanopillars with perpendicular anisotropy and high coercive fields. The best results are observed for Co/Ni multilayers, which have higher giant magnetoresistance values and spin-torque efficiencies than Co/Pt multilayers. The reference layers were designed to have significantly higher anisotropy allowing a complete current–field phase diagram of the free-layer reversal to be explored. The results are compared to micromagnetic modelling of the free layer that, depending on the bias current and applied field, details regions of irreversible magnetic switching, coherent and incoherent spin waves, or static non-uniform magnetization states. This ability to manipulate high-anisotropy magnetic elements could prove useful for a range of spintronic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of patterned Co/Ni samples.
Figure 2: Transport measurements of the 50×100 nm2 Co/Ni sample.
Figure 3: Experimentally determined IBH phase diagram for the 50×100 nm2 Co/Ni sample showing the parallel or antiparallel states where each symbol corresponds to a distinct change in the resistance.
Figure 4: Transport measurements of the 50×100 nm2 Co/Ni sample.
Figure 5: Theoretically derived phase diagram for the switching of the free layer with the magnetization of the reference layer pointing down.

Similar content being viewed by others

References

  1. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  Google Scholar 

  2. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  Google Scholar 

  3. Tsoi, M. et al. Excitation of a magnetic multilayer by an electric current. Phys. Rev. Lett. 80, 4281–4284 (1998).

    Article  Google Scholar 

  4. Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N. & Buhrman, R. A. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  Google Scholar 

  5. Sun, J. Z. Current-driven magnetic switching in manganite trilayer junctions. J. Magn. Magn. Mater. 202, 157–162 (1999).

    Article  Google Scholar 

  6. Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B. & Ralph, D. C. Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Phys. Rev. Lett. 84, 3149–3152 (2000).

    Article  Google Scholar 

  7. Kiselev, S. I. et al. Spin-transfer excitations of permalloy nanopillars for large applied currents. Phys. Rev. B 72, 064430 (2005).

    Article  Google Scholar 

  8. Xiao, J., Zangwill, A. & Stiles, M. D. Macrospin models of spin transfer dynamics. Phys. Rev. B 72, 014446 (2005).

    Article  Google Scholar 

  9. Gurney, B. A. et al. in Ultrathin Magnetic Structures IV: Applications of Nanomagnetism (eds Heinrich, B. & Bland, J. A. C.) 149–174 (Springer, Berlin, 2005).

    Book  Google Scholar 

  10. Slonczcewski, J. C. Currents and torques in metallic magnetic multilayers. J. Magn. Magn. Mater. 247, 324–338 (2002).

    Article  Google Scholar 

  11. Berger, L. Relation between giant magnetoresistance and critical current for spin precession in magnetic multilayers. Phys. Rev. B 72, 100402 (2005).

    Article  Google Scholar 

  12. Barnas, J., Fert, A., Gmitra, M., Weymann, I. & Dugaev, V. K. From giant magnetoresistance to current-induced switching by spin transfer. Phys. Rev. B 72, 024426 (2005).

    Article  Google Scholar 

  13. Schmidt, G. Concepts for spin injection into semiconductors—a review. J. Phys. D 38, R107–R122 (2005).

    Article  Google Scholar 

  14. Jiang, Y. et al. Substantial reduction of critical current for magnetization switching in an exchange-biased spin valve. Nature Mater. 3, 361–364 (2004).

    Article  Google Scholar 

  15. Urazhdin, S., Birge, N. O., Pratt, W. P. Jr & Bass, J. Switching current versus magnetoresistance in magnetic multilayer nanopillars. Appl. Phys. Lett. 84, 1516–1518 (2004).

    Article  Google Scholar 

  16. Braganca, P. M. et al. Reducing the critical current for short-pulse spin-transfer switching of nanomagnets. Appl. Phys. Lett. 87, 112507 (2005).

    Article  Google Scholar 

  17. Kent, A. D., Özyilmaz, B. & del Barco, E. Spin-transfer-induced precessional magnetization reversal. Appl. Phys. Lett. 84, 3897–3899 (2004).

    Article  Google Scholar 

  18. Lee, K. J., Redon, O. & Dieny, B. Analytical investigation of spin-transfer dynamics using a perpendicular-to-plane polarizer. Appl. Phys. Lett. 86, 022505 (2005).

    Article  Google Scholar 

  19. Özyilmaz, B. et al. Current-induced magnetization reversal in high magnetic fields in Co/Cu/Co nanopillars. Phys. Rev. Lett. 91, 067203 (2003).

    Article  Google Scholar 

  20. Kiselev, S. I. et al. Current-induced nanomagnet dynamics for magnetic fields perpendicular to the sample plane. Phys. Rev. Lett. 93, 036601 (2004).

    Article  Google Scholar 

  21. Rippard, W. H., Pufall, M. R., Kaka, S., Silva, T. J. & Russek, S. E. Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle. Phys. Rev. B 70, 100406 (2004).

    Article  Google Scholar 

  22. Özyilmaz, B., Kent, A. D., Rooks, M. J. & Sun, J. Z. Bipolar high-field excitations in Co/Cu/Co nanopillars. Phys. Rev. B 71, 140403 (2005).

    Article  Google Scholar 

  23. Daalderop, G. H. O., Kelly, P. J. & den Broeder, F. J. A. Prediction and confirmation of perpendicular magnetic anisotropy in Co/Ni multilayers. Phys. Rev. Lett. 68, 682–685 (1992).

    Article  Google Scholar 

  24. Hu, G., Thomson, T., Rettner, C. T., Raoux, S. & Terris, B. D. Magnetization reversal in Co/Pd nanostructures and films. J. Appl. Phys. 97, 10J702 (2005).

    Article  Google Scholar 

  25. Lacour, D., Katine, J. A., Smith, N., Carey, M. J. & Childress, J. R. Thermal effects on the magnetic-field dependence of spin-transfer-induced magnetization reversal. Appl. Phys. Lett. 85, 4681–4683 (2004).

    Article  Google Scholar 

  26. http://llgmicro.home.mindspring.com/.

  27. Lee, K. J., Deac, A., Redon, O., Nozieres, J. P. & Dieny, B. Excitations of incoherent spin-waves due to spin-transfer torque. Nature Mater. 3, 877–881 (2004).

    Article  Google Scholar 

  28. Back, C. H. & Siegmann, H. C. Ultrashort magnetic field pulses and the elementary process of magnetization reversal. J. Magn. Magn. Mater. 200, 774–785 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Y. Lemaho, Y. Henry and D. Lacour for assistance in transport measurement and J. Sun for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric E. Fullerton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangin, S., Ravelosona, D., Katine, J. et al. Current-induced magnetization reversal in nanopillars with perpendicular anisotropy. Nature Mater 5, 210–215 (2006). https://doi.org/10.1038/nmat1595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing