Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Complex precipitation pathways in multicomponent alloys

Abstract

One usual way to strengthen a metal is to add alloying elements and to control the size and the density of the precipitates obtained. However, precipitation in multicomponent alloys can take complex pathways depending on the relative diffusivity of solute atoms and on the relative driving forces involved. In Al–Zr–Sc alloys, atomic simulations based on first-principle calculations combined with various complementary experimental approaches working at different scales reveal a strongly inhomogeneous structure of the precipitates: owing to the much faster diffusivity of Sc compared with Zr in the solid solution, and to the absence of Zr and Sc diffusion inside the precipitates, the precipitate core is mostly Sc-rich, whereas the external shell is Zr-rich. This explains previous observations of an enhanced nucleation rate in Al–Zr–Sc alloys compared with binary Al–Sc alloys, along with much higher resistance to Ostwald ripening, two features of the utmost importance in the field of light high-strength materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Al3ZrxSc1−x precipitates obtained by atomic simulation.
Figure 2: 3DAP analysis of the edge of an Al3ZrxSc1−x precipitate.
Figure 3: HREM image of an Al3ZrxSc1−x precipitate.
Figure 4: HAADF analysis of Al3ZrxSc1−x precipitates.
Figure 5: SAXS.
Figure 6: Precipitation kinetics deduced from SAXS.

Similar content being viewed by others

References

  1. Yelagin, V. I., Zakharov, V. V., Pavlenko, S. G. & Rostova, T. D. Influence of zirconium additions on ageing of Al-Sc alloys. Phys. Met. Metall. 60, 88–92 (1985).

    Google Scholar 

  2. Davydov, V. G., Yelagin, V. I., Sakharov, V. V. & Rostova, T. D. Alloying aluminum alloys with scandium and zirconium additives. Met. Sci. Heat Treatment 38, 347–352 (1996).

    Article  Google Scholar 

  3. Toropova, L. S., Eskin, D. G., Kharaterova, M. L. & Bobatkina, T. V. Advanced Aluminum Alloys Containing Scandium–-Structure and Properties (Gordon and Breach Sciences, Amsterdam, 1998).

    Google Scholar 

  4. Fuller, C. B., Seidman, D. N. & Dunand, D. C. Mechanical properties of Al(Sc,Zr) alloys at ambient and elevated temperatures. Acta Mater. 51, 4803–4814 (2003).

    Article  Google Scholar 

  5. Riddle, Y. W. & Sanders, T. H. A study of coarsening, recrystallization and morphology of microstructure in Al-Sc-(Zr)-(Mg) alloys. Metal. Mater. Trans. A 35, 341–350 (2004).

    Article  Google Scholar 

  6. Fuller, C. B. & Seidman, D. N. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: Part II–-Coarsening of Al3(Sc1−xZrx) precipitates. Acta Mater. 53, 5415–5428 (2005).

    Article  Google Scholar 

  7. Clouet, E., Nastar, M. & Sigli, C. Nucleation of Al3Zr and Al3Sc in aluminum alloys: from kinetic Monte Carlo simulations to classical theory. Phys. Rev. B 69, 064109 (2004).

    Article  Google Scholar 

  8. Clouet, E., Barbu, A., Laé, L. & Martin, G. Precipitation kinetics of Al3Zr and Al3Sc in aluminum alloys modeled with cluster dynamics. Acta Mater. 53, 2313–2325 (2005).

    Article  Google Scholar 

  9. Connolly, J. W. & Williams, A. R. Density-functional theory applied to phase transformations in transition-metal alloys. Phys. Rev. B 27, 5169–5172 (1983).

    Article  Google Scholar 

  10. Harada, Y. & Dunand, D. C. Microstructure of Al3Sc with ternary transition-metal additions. Mater. Sci. Eng. A 329–331, 686–695 (2002).

    Article  Google Scholar 

  11. Clouet, E. Séparation de phase dans les alliages Al-Zr-Sc: du saut des atomes à la croissance de précipités ordonnés. PhD Thesis, École Centrale Paris (2004); <http://tel.ccsd.cnrs.fr/tel-00005967>.

  12. Tolley, A., Radmilovic, V. & Dahmen, U. Segregation in Al3(Sc,Zr) precipitates in Al-Sc-Zr alloys. Scripta Mater. 52, 621–625 (2005).

    Article  Google Scholar 

  13. Fuller, C. B. Temporal evolution of the microstructures of Al(Sc,Zr) alloys and their influences on mechanical properties. PhD Thesis, Northwestern Univ. (2003); <http://arc.nucapt.northwestern.edu/refbase/show.php?record=147>.

  14. Forbord, B., Lefebvre, W., Danoix, F., Hallem, H. & Marthinsen, K. Three dimensional atom probe investigation of the formation of Al3(Sc,Zr)-dispersoids in aluminium alloys. Scripta Mater. 51, 333–337 (2004).

    Article  Google Scholar 

  15. Fuller, C. B., Murray, J. L. & Seidman, D. N. Temporal evolution of the nanostructure of Al(Sc,Zr) alloys: part I–-Chemical compositions of Al3(Sc1−xZrx) precipitates. Acta Mater. 53, 5401–5413 (2005).

    Article  Google Scholar 

  16. Laé, L. Étude de la precipitation en dynamique d'amas dans les alliages d'aluminium et dans les aciers. PhD Thesis, INPG (2004); <http://tel.ccsd.cnrs.fr/tel-00009313>.

  17. Dumont, M., Lefebvre, W., Doisneau-Cottignies, B. & Deschamps, A. Characterisation of the composition and volume fraction of η′ and η precipitates in an Al-Zn-Mg alloy by a combination of atom probe, small-angle X-ray scattering and transmission electron microscopy. Acta Mater. 53, 2881–2892 (2005).

    Article  Google Scholar 

  18. Crewe, A. V., Langmore, J. P. & Isaacson, M. S. in Physical Aspects of Electron Microscopy and Microbeam Analysis (eds Siegel, B. M. & Beaman, D. R.) 47 (Wiley, New York, 1975).

    Google Scholar 

  19. Egerton, R. F. Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1996).

    Book  Google Scholar 

  20. Glatter, O. & Kratky, O. Small Angle X-Ray Scattering (Academic, New York, 1982).

    Google Scholar 

  21. Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C. & Ozoliņš, V. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. Phys. Rev. Lett. 91, 036101 (2003).

    Article  Google Scholar 

  22. Marquis, E. A., Seidman, D. N., Asta, M. & Woodward, C. Composition evolution of nanoscale Al3Sc precipitates in an Al-Mg-Sc alloy: Experiments and computations. Acta Mater. 54, 119–130 (2006).

    Article  Google Scholar 

  23. Laé, L. & Guyot, P. in Proc. 2nd Int. Conference on Multiscale Materials Modeling (ed. Ghoniem, N. M.) 272–274 (UCLA, Los Angeles, 2004).

    Google Scholar 

  24. Robson, J. D. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater. 52, 1409–1421 (2004).

    Article  Google Scholar 

  25. Blavette, D., Bostel, A., Sarrau, J. M., Deconihout, B. & Menand, A. An atom probe for three-dimensional tomography. Nature 363, 432–435 (1993).

    Article  Google Scholar 

  26. Bémont, E. et al. Effects of incidence angles of ions on the mass resolution of an energy compensated 3D atom probe. Ultramicroscopy 95, 231–238 (2003).

    Article  Google Scholar 

  27. De Geuser, F. et al. An improved reconstruction procedure for the correction of local magnification effects in 3DAP. Surf. Interface Anal. (in the press).

Download references

Acknowledgements

The authors are grateful to G. Martin for his invaluable help and advice throughout this work and for his careful reading of the manuscript. They also thank M. Athènes, D. Blavette, M. Guttmann, P. Guyot, B. Legrand, D. Seidman, C. Sigli and F. Soisson for fruitful discussions. They are indebted to C. Sigli and to Alcan for providing the heat-treated alloy samples, and to D. Seidman for sending preprints of refs 6 and 15 as far back as October 2002. They thank E. Adam for the use of his atomic visualization tool. This work was supported by the joint research program `Precipitation' between Alcan, Arcelor, CNRS, and CEA. E.C. and L.L. acknowledge financial support from Alcan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Clouet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information, figures and tables (PDF 460 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clouet, E., Laé, L., Épicier, T. et al. Complex precipitation pathways in multicomponent alloys. Nature Mater 5, 482–488 (2006). https://doi.org/10.1038/nmat1652

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1652

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing