Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces

Abstract

One of the key objectives in fuel-cell technology is to improve and reduce Pt loading as the oxygen-reduction catalyst. Here, we show a fundamental relationship in electrocatalytic trends on Pt3M (M=Ni, Co, Fe, Ti, V) surfaces between the experimentally determined surface electronic structure (the d-band centre) and activity for the oxygen-reduction reaction. This relationship exhibits ‘volcano-type’ behaviour, where the maximum catalytic activity is governed by a balance between adsorption energies of reactive intermediates and surface coverage by spectator (blocking) species. The electrocatalytic trends established for extended surfaces are used to explain the activity pattern of Pt3M nanocatalysts as well as to provide a fundamental basis for the catalytic enhancement of cathode catalysts. By combining simulations with experiments in the quest for surfaces with desired activity, an advanced concept in nanoscale catalyst engineering has been developed.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: UHV surface characterization of a Pt3Fe alloy.
Figure 2: Stability of Pt3Fe in the electrochemical environment.
Figure 3: Electrochemical properties of Pt3Fe surfaces.
Figure 4: Relationships between the catalytic properties and electronic structure of Pt3M alloys.
Figure 5: Nanoparticle catalysts.

Similar content being viewed by others

References

  1. Hoogers, G. & Thomsett, D. The role of catalysis in proton exchange membrane fuel cell technology. Cat. Tech. 3, 106 (1999).

    Google Scholar 

  2. Markovic, N. M. & Ross, P. N. Jr. New electrocatalysts for fuel cells: from model surfaces to commercial catalysts. Cat. Tech. 4, 110–126 (2000).

    CAS  Google Scholar 

  3. Dresselhause, M. S. & Thomas, I. L. Alternative energy technologies. Nature 414, 332–337 (2001).

    Article  Google Scholar 

  4. Schlapbach, L. & Züttel, A. Hydrogen-storage materials for mobile aplications. Nature 414, 353–358 (2001).

    Article  CAS  Google Scholar 

  5. Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 354–352 (2001).

    Article  Google Scholar 

  6. Markovic, N. M. & Ross, P. N. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 45, 117–230 (2002).

    Article  CAS  Google Scholar 

  7. Vielstich, W., Lamm, A & Gasteiger, H. A. Handbook of Fuel Cells, Fundamentals Technology and Applications (Wiley, West Sussex, 2003).

    Google Scholar 

  8. Appleby, A. J. Electrocatalysis and fuel cells. Catal. Rev. 4, 221–244 (1970).

    Article  CAS  Google Scholar 

  9. Kinoshita, K. Electrochemical Oxygen Technology (Wiley, New York, 1992).

    Google Scholar 

  10. Toda, T., Igarashi, H., Uchida, H. & Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni and Co. J. Electrochem. Soc. 146, 3750–3756 (1999).

    Article  CAS  Google Scholar 

  11. Markovic, N. M., Radmilovic, V. & Ross, P. N. in Catalysis and Electrocatalysis at Nanoparticle Surfaces (eds Wieckowski, A., Savinova, E. & Vayenas, C.) Ch. 9 (Marcel Dekker, New York, Basel, 2003).

    Google Scholar 

  12. Mukerjee, S. & Srinivasan, S. Enhanced electrocatalyssis of oxygen reduction reaction on platinum alloys in proton-exchange membrane fuel-cells. J. Electroanal. Chem. 357, 201–224 (1993).

    Article  CAS  Google Scholar 

  13. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Kinetics of oxygen reduction reaction on Pt(9hkl) electrodes: Implication for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144, 1591–1597 (1997).

    Article  CAS  Google Scholar 

  14. Stamenkovic, V., Schmidt, T. J., Markovic, N. M. & Ross, P. N. Jr. Surface composition effects in electrocatalysis: kinetics of oxygen reaction on well defined Pt3Ni and Pt3Co alloy surfaces. J. Phys. Chem. B 106, 11970–11979 (2002).

    Article  CAS  Google Scholar 

  15. Stamenkovic, V., Schmidt, T. J., Ross, P. N. & Markovic, N. M. Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J. Electroanal. Chem. 554, 191–199 (2003).

    Article  Google Scholar 

  16. Gauthier, Y., Baudoing-Savois, R., Bugnard, J. M., Bardi, U. & Atrei, A. Influence of the transition metal and order on the composition profile of Pt80M20(111) (M=Ni, Co, Fe) alloy surfaces: LEED study of Pt80Co20(111). Surf. Sci. 276, 1–11 (1992).

    Article  CAS  Google Scholar 

  17. Gauthier, Y. Pt-metal alloy surfaces: systematic trends. Surf. Rev. Lett. 3, 1663–1689 (2001).

    Article  Google Scholar 

  18. Mun, B. S., Lee, C., Stamenkovic, V., Markovic, N. M. & Ross, P. N. Electronic structure of Pd thin films on Re(0001) studied by high-resolution core-level and valence-band photoemission. Phys. Rev. B 71, 115420–115426 (2005).

    Article  Google Scholar 

  19. Norskov, J. K., Kitchin, J. R., Bligaard, J. R. & Joussen, T. Origin of the overpotential for oxygen reduction at a fuel cell cathode. J. Phys. Chem. B 108, 17886 (2004).

    Article  CAS  Google Scholar 

  20. Stamenkovic, V. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Edn 45, 2897–2901 (2006).

    Article  CAS  Google Scholar 

  21. Hammer, B. & Norskov, J. K. in Chemisorption and Reactivity on Supported Clusters and Thin Films (eds Lambert, R. M. & Pacchioni, G.) 285–351 (Kluwer Academic, 1997).

    Book  Google Scholar 

  22. Greeley, J., Norskov, J. K. & Mavrikakis, M. Electronic structure and catalysis on metal surfaces. Annu. Rev. Phys. Chem. 53, 319–348 (2002).

    Article  CAS  Google Scholar 

  23. Xu, Y., Ruban, V. & Mavrikakis, M. Adsorption and dissociation of O2 on PtCo and Pt–Fe alloys. J. Am. Chem. Soc. 126, 4717–4725 (2004).

    Article  CAS  Google Scholar 

  24. Greeley, J. & Mavrikakis, M. Alloy catalysts designed from first principles. Nature Mater. 3, 810–815 (2004).

    Article  CAS  Google Scholar 

  25. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in sulphuric acid solution: rotating ring-Pt(hkl) disk studies. J. Phys. Chem. 99, 3411–3415 (1995).

    Article  CAS  Google Scholar 

  26. Grgur, B. N., Markovic, N. M. & Ross, P. N. Jr. Temperature-dependent oxygen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. Can. J. Chem. 75, 1465–1471 (1997).

    Article  CAS  Google Scholar 

  27. Markovic, N. M., Gasteiger, H. A., Grgur, B. N. & Ross, P. N. Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 467, 157–163 (1999).

    Article  CAS  Google Scholar 

  28. Stamenkovic, V., Markovic, N. M. & Ross, P. N. Jr. Structure-relationships in electrocatalysis: oxygen reduction and hydrogen oxidation reaction on Pt(111) and Pt(100) in solution containing chloride ions. J. Electroanal. Chem. 500, 44–51 (2000).

    Article  Google Scholar 

  29. Tarasevich, M. R., Sadkowski, A. & Yeager, E. in Comprehensive Treatise in Electrochemistry (eds Bockris, J. O. M., Conway, B. E., Yeager, E., Khan, S. U. M. & White, R. E.) 301–398 (Plenum, New York, 1983).

    Book  Google Scholar 

  30. Uribe, F., Wilson, M. S., Springer, T. & Gottesfeld, S. in Proceedings of the Workshop on Structural Effects in Electrocatalytsis and Oxygen Electrochemistry 92-11 (eds Scherson, D., Tryk, D., Daroux, M. & Xing, X.) 494–509 (The Electrochemical Society, Pennington, NJ, 1992).

    Google Scholar 

  31. Roques, J. & Anderson, A. B. Cobalt concentration effect in Pt(1−x)Co x on the reversible potential for forming OHads from H2Oads in acid solution. Surf. Sci. 581, 105–117 (2005).

    Article  CAS  Google Scholar 

  32. Zhang, J., Vukmirovic, M. B., Xu, Y., Mavrikakis, M. & Adzic, R. R. Controlling the catalytic activity of platinum monolayer electrocatalysts for oxygen reduction with different substrates. Angew. Chem. 117, 2170–2173 (2005).

    Article  Google Scholar 

  33. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface active sites. Science Published online 11 January 2007 (doi: 10.1126/science.1125941).

  34. Mathias, M. F. et al. Two fuel cell cars in every garage? Electrochemical Society-Interface 14, 24–35 (2005).

    CAS  Google Scholar 

  35. Paulus, U. A. et al. Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J. Phys. Chem. B 106, 4181–4191 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

V.R.S. and N.M.M. acknowledge the support from the contract (DE-AC02-06CH11357) between UChicago Argonne, LLC and the US Department of Energy. We thank J. K. Nørskov and co-workers at the Technical University of Denmark for our ongoing collaboration on the design of catalysts for fuel cell reactions. We acknowledge the support of General Motors and helpful discussions with H. A. Gasteiger and F. T. Wagner. C.A.L. acknowledges the support of the EPSRC (UK). V.R.S. thanks M. W. West for support in experimental design.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vojislav R. Stamenkovic or Nenad M. Markovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary figures and material (PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stamenkovic, V., Mun, B., Arenz, M. et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater 6, 241–247 (2007). https://doi.org/10.1038/nmat1840

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1840

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing