Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Composition and density of nanoscale calcium–silicate–hydrate in cement

Abstract

Although Portland cement concrete is the world’s most widely used manufactured material, basic questions persist regarding its internal structure and water content, and their effect on concrete behaviour. Here, for the first time without recourse to drying methods, we measure the composition and solid density of the principal binding reaction product of cement hydration, calcium–silicate–hydrate (C–S–H) gel, one of the most complex of all gels. We also quantify a nanoscale calcium hydroxide phase that coexists with C–S–H gel. By combining small-angle neutron and X-ray scattering data, and by exploiting the hydrogen/deuterium neutron isotope effect both in water and methanol, we determine the mean formula and mass density of the nanoscale C–S–H gel particles in hydrating cement. We show that the formula, (CaO)1.7(SiO2)(H2O)1.80, and density, 2.604 Mg m−3, differ from previous values for C–S–H gel, associated with specific drying conditions. Whereas previous studies have classified water within C–S–H gel by how tightly it is bound, in this study we classify water by its location—with implications for defining the chemically active (C–S–H) surface area within cement, and for predicting concrete properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the nanoscale C–S–H particles.
Figure 2: Effect of isotope exchange on absolute-calibrated SANS data.
Figure 3: OPC SANS and SAXS intensity data in H2O and CH3OH on an absolute scale.
Figure 4: Neutron scattering-length density, ρsolid, of nanoscale C–S–H/Ca(OH)2 versus Q.
Figure 5: Combined SANS/USANS data showing C–S–H and Ca(OH)2 components in OPC.

Similar content being viewed by others

References

  1. Le Chatelier, H. L. Experimental Researches on the Constitution of Hydraulic Mortars (McGraw, New York, 1905).

    Google Scholar 

  2. Taylor, H. F. W. Cement Chemistry 2nd edn (Thomas Telford, London, 1997).

    Book  Google Scholar 

  3. Acker, P. in Creep, Shrinkage, and Durability Mechanics of Concrete and Other Quasi-Brittle Materials (eds Ulm, F. J., Bazant, Z. P. & Wittmann, F. H.) (Elsevier Science, New York, 2001).

    Google Scholar 

  4. Scherer, G. W. Structure and properties of gels. Cement Concrete Res. 29, 1149–1157 (1999).

    Article  CAS  Google Scholar 

  5. Pijaudier-Cabot, G., Gerard, B. & Acker, P. (eds) in Proc. 7th Int. Conf. on Creep, Shrinkage, and Durability of Concrete and Concrete Structures (Hermes Science, London, 2005).

  6. Bazant, Z., Cusatis, G. & Cedolin, L. Temperature effect on concrete creep modeled by microprestress-solidification theory. J. Eng. Mech. 130, 691–699 (2004).

    Article  Google Scholar 

  7. Richardson, I. G. The nature of C–S–H in hardened cement pastes. Cement Concrete Res. 29, 1131–1147 (1999).

    Article  CAS  Google Scholar 

  8. Gaboriaud, F., Nonat, A., Chaumont, D., Craievich, A. & Hanquet, B. Si-29 NMR and small-angle X-ray scattering studies of the effect of alkaline ions (Li+,Na+, and K+) in silico-alkaline sols. J. Phys. Chem. B 103, 2091–2099 (1999).

    Article  CAS  Google Scholar 

  9. Papavassiliou, G. et al. Role of the surface morphology in cement gel growth dynamics: A combined nuclear magnetic resonance and atomic force microscopy study. J. Appl. Phys. 82, 449–452 (1997).

    Article  CAS  Google Scholar 

  10. Cong, X. & Kirkpatrick, R. J. 29Si MAS NMR study of the structure of calcium silicate hydrate. Adv. Cement Based Mater. 3, 144–156 (1994).

    Article  Google Scholar 

  11. Winslow, D. N. & Diamond, S. Specific surface of hardened cement paste as determined by small-angle X-ray scattering. J. Am. Ceram. Soc. 57, 193–197 (1974).

    Article  CAS  Google Scholar 

  12. Volkl, J. J., Beddoe, R. E. & Setzer, M. J. The specific surface of hardened cement paste by small-angle X-ray-scattering effect of moisture-content and chlorides. Cement Concrete Res. 17, 81–88 (1987).

    Article  Google Scholar 

  13. Yang, R. H., Liu, B. Y. & Wu, Z. W. Study on the pore structure of hardened cement paste by SAXS. Cement Concrete Res. 20, 385–393 (1990).

    Article  CAS  Google Scholar 

  14. Winslow, D., Bukowski, J. M. & Young, J. F. The early evolution of the surface of hydrating cement. Cement Concrete Res. 24, 1025–1032 (1994).

    Article  CAS  Google Scholar 

  15. Beddoe, R. E. & Lang, K. Effect of moisture on fractal dimension and specific surface of hardened cement paste by small-angle X-ray-scattering. Cement Concrete Res. 24, 605–612 (1994).

    Article  CAS  Google Scholar 

  16. Winslow, D., Bukowski, J. M. & Young, J. F. The fractal arrangement of hydrated cement paste. Cement Concrete Res. 25, 147–156 (1995).

    Article  CAS  Google Scholar 

  17. Thomas, J. J., Jennings, H. M. & Allen, A. J. The surface area of hardened cement paste as measured by various techniques. Concrete Sci. Eng. 1, 45–64 (1999).

    Google Scholar 

  18. Vollet, D. R. & Craievich, A. F. Effects of temperature and of the addition of accelerating and retarding agents on the kinetics of hydration of tricalcium silicate. J. Phys. Chem. B 104, 12143–12148 (2000).

    Article  CAS  Google Scholar 

  19. Allen, A. J. et al. A small-angle scattering study of cement porosities. J. Phys. D 15, 1817–1833 (1982).

    Article  CAS  Google Scholar 

  20. Pearson, D., Allen, A. J., Windsor, C. G., Alford, N. McN. & Double, D. D. An investigation on the nature of porosity in hardened cement pastes using small-angle neutron scattering. J. Mater. Sci. 18, 430–438 (1983).

    Article  CAS  Google Scholar 

  21. Pearson, D. & Allen, A. J. A study of ultrafine porosity in hydrated cements using small-angle neutron scattering. J. Mater. Sci. 20, 303–315 (1985).

    Article  Google Scholar 

  22. Allen, A. J., Oberthur, R. C., Pearson, D., Schofield, P. & Wilding, C. R. Development of the fine porosity and gel structure of hydrating cement systems. Phil. Mag. B 56, 263–288 (1987).

    Article  CAS  Google Scholar 

  23. Haussler, F., Eichhorn, F., Rohling, S. & Baumbach, H. Monitoring of the hydration process of hardening cement pastes by small-angle neutron scattering. Cement Concrete Res. 20, 644–654 (1990).

    Article  Google Scholar 

  24. Castano, V. M., Schmidt, P. W. & Hornis, H. G. Small-angle scattering studies of the pore structure of polymer-modified portland cement pastes. J. Mater. Res. 5, 1281–1284 (1990).

    Article  CAS  Google Scholar 

  25. Allen, A. J. Time-resolved phenomena in cements, clays and porous rocks. J. Appl. Cryst. 24, 624–634 (1991).

    Article  CAS  Google Scholar 

  26. Eichhorn, F., Haussler, F. & Baumbach, H. Structural studies on hydrating cement pastes. J. Phys. IV 3, 369–372 (1993).

    CAS  Google Scholar 

  27. Adenot, F., Auvray, L. & Touray, J. C. Determination of the fractal dimension of CSH aggregates (hydrated calcium silicates) of different origins and compositions — consequences for studies of cement paste durability. C. R. Acad. Sci. II 317, 185–189 (1993).

    CAS  Google Scholar 

  28. Janik, J. A., Kurdowski, W., Podsiadly, R. & Samseth, J. Studies of fractal aspects of cement. Acta Phys. Pol. A 90, 1179–1184 (1996).

    Article  CAS  Google Scholar 

  29. Haussler, F., Hempel, M. & Baumbach, H. Long-time monitoring of the microstructural change in hardening cement paste by SANS. Adv. Cement Res. 9, 139–147 (1997).

    Article  CAS  Google Scholar 

  30. Allen, A. J. & Livingston, R. A. Relationship between differences in silica fume additives and fine scale microstructural evolution in cement based materials. Adv. Cement Based Mater. 8, 118–131 (1998).

    Article  CAS  Google Scholar 

  31. Thomas, J. J., Jennings, H. M. & Allen, A. J. The surface area of cement paste as measured by neutron scattering — evidence for two C–S–H morphologies. Cement Concrete Res. 28, 897–905 (1998).

    Article  CAS  Google Scholar 

  32. Heinemann, A. et al. Fractal microstructures in hydrating cement paste. J. Mater. Sci. Lett. 18, 1413–1416 (1999).

    Article  CAS  Google Scholar 

  33. Heinemann, A., Hermann, H. & Haussler, F. SANS analysis of fractal microstructures in hydrating cement paste. Physica B 276, 892–893 (2000).

    Article  Google Scholar 

  34. Thomas, J. J., Chen, J. J., Allen, A. J. & Jennings, H. M. Effects of decalcification on the microstructure and surface area of cement and tricalcium silicate pastes. Cement Concrete Res. 34, 2297–2307 (2004).

    Article  CAS  Google Scholar 

  35. Thomas, J. J., Jennings, H. M. & Allen, A. J. Determination of the neutron scattering contrast of hydrated portland cement paste using H2O/D2O exchange. Adv. Cement Based Mater. 7, 119–122 (1998).

    Article  CAS  Google Scholar 

  36. Richardson, I. G. Tobermorite/jennite- and tobermorite/calcium hydroxide-based models for the structure of C–S–H: Applicability to hardened pastes of tricalcium silicate, beta-dicalcium silicate, portland cement, and blends of portland cement with blast-fumace slag, metakaolin, or silica fume. Cement Concrete Res. 34, 1733–1777 (2004).

    Article  CAS  Google Scholar 

  37. Porod, G. in Small-Angle X-ray Scattering (eds Glatter, O. & Kratky, O.) (Academic, London, 1982).

    Google Scholar 

  38. Sears, V. F. Neutron scattering lengths and cross sections. Neutron News 3.3, 29–37 (1992).

    Google Scholar 

  39. Allison, S. K., Fox, J. P., Hargreaves, R. & Bates, S. P. Clustering and microimmiscibility in alcohol-water mixtures: Evidence from molecular-dynamics simulations. Phys. Rev. B 71, 024201 (2005).

    Article  Google Scholar 

  40. Chantler, C. T. et al. X-ray form factor, attenuation and scattering tables (version 2. 1). (National Institute of Standards and Technology, Gaithersburg, 2005) Available online at: http://physics.nist.gov/ffast.

  41. Brouwers, H. J. H. The work of Powers and Brownyard revisited: Part 1. Cement Concrete Res. 34, 1697–1716 (2004);ibid Part 2 Cement Concrete Res. 35, 1922–1936 (2005).

    Article  CAS  Google Scholar 

  42. Potton, J. A., Daniell, G. J. & Rainford, B. D. Particle-size distributions from SANS data using the maximum-entropy method. J. Appl. Cryst. 21, 663–668 (1988).

    Article  Google Scholar 

  43. Kirkpatrick, R. J., Kalinichev, A. G., Hou, X. & Struble, L. Experimental and molecular dynamics modeling studies of interlayer swelling: Water incorporation in kanemite and ASR gel. Mater. Struct. 38, 449–458 (2005).

    Article  CAS  Google Scholar 

  44. Glinka, C. J. et al. The 30 m small-angle neutron scattering instruments at the National Institute of Standards and Technology. J. Appl. Cryst. 31, 430–445 (1998).

    Article  CAS  Google Scholar 

  45. Barker, J. G. et al. Design and performance of a thermal-neutron double-crystal diffractometer for USANS at NIST. J. Appl. Cryst. 38, 1004–1011 (2005).

    Article  CAS  Google Scholar 

  46. Ilavsky, J., Jemian, P. R., Allen, A. J. & Long, G. G. Versatile USAXS (Bonse-Hart) facility for advanced materials research. AIP Conf. Proc. 705, 510–513 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to C. Glinka, B. Hammouda, J. Barker, J. Ilavsky, P. R. Jemian and R. A. Livingston for scientific/technical support. Research at Northwestern University was supported by NSF grant CMS-0409571. SANS measurements are partly based on activities supported by NSF agreement DMR-9122444. The Advanced Photon Source is supported by US DoE, Office of Science contract W-31-109-ENG-38.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Allen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and table S1 (PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, A., Thomas, J. & Jennings, H. Composition and density of nanoscale calcium–silicate–hydrate in cement. Nature Mater 6, 311–316 (2007). https://doi.org/10.1038/nmat1871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1871

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing