Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic effects at the interface between non-magnetic oxides

Abstract

The electronic reconstruction at the interface between two insulating oxides can give rise to a highly conductive interface1,2. Here we show how, in analogy to this remarkable interface-induced conductivity, magnetism can be induced at the interface between the otherwise non-magnetic insulating perovskites SrTiO3 and LaAlO3. A large negative magnetoresistance of the interface is found, together with a logarithmic temperature dependence of the sheet resistance. At low temperatures, the sheet resistance reveals magnetic hysteresis. Magnetic ordering is a key issue in solid-state science and its underlying mechanisms are still the subject of intense research. In particular, the interplay between localized magnetic moments and the spin of itinerant conduction electrons in a solid gives rise to intriguing many-body effects such as Ruderman–Kittel–Kasuya–Yosida interactions3, the Kondo effect4 and carrier-induced ferromagnetism in diluted magnetic semiconductors5. The conducting oxide interface now provides a versatile system to induce and manipulate magnetic moments in otherwise non-magnetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sheet resistance of n-type SrTiO3–LaAlO3 interfaces.
Figure 2: Large negative magnetoresistance.
Figure 3: Magnetic hysteresis.

Similar content being viewed by others

References

  1. Ohtomo, A., Muller, D. A., Grazul, J. L. & Hwang, H. Y. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419, 378–380 (2002).

    Article  CAS  Google Scholar 

  2. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  CAS  Google Scholar 

  3. Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear magnetic moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

    Article  CAS  Google Scholar 

  4. Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

    Article  CAS  Google Scholar 

  5. Dietl, T. & Ohno, H. Engineering magnetism in semiconductors. Mater. Today 9, 18–26 (2006).

    Article  CAS  Google Scholar 

  6. Nakagawa, N., Hwang, H. Y. & Muller, D. A. Why some interfaces cannot be sharp. Nature Mater. 5, 204–209 (2006).

    Article  CAS  Google Scholar 

  7. Okamoto, S. & Millis, A. J. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428, 630–633 (2004).

    Article  CAS  Google Scholar 

  8. Okamoto, S. & Millis, A. J. Theory of Mott insulator–band insulator heterostructures. Phys. Rev. B 70, 075101 (2004).

    Article  Google Scholar 

  9. Hamann, D. R., Muller, D. A. & Hwang, H. Y. Lattice-polarization effects on electron-gas charge densities in ionic superlattices. Phys. Rev. B 73, 195403 (2006).

    Article  Google Scholar 

  10. Maurice, J.-L. et al. Electronic conductivity and structural distortion at the interface between insulators SrTiO3 and LaAlO3 . Phys. Status Solidi A 203, 2209–2214 (2006).

    Article  CAS  Google Scholar 

  11. Huijben, M. et al. Electronically coupled complementary interfaces between perovskite band insulators. Nature Mater. 5, 556–560 (2006).

    Article  CAS  Google Scholar 

  12. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  CAS  Google Scholar 

  13. Takizawa, M. et al. Photoemission from buried interfaces in SrTiO3/LaTiO3 superlattices. Phys. Rev. Lett. 97, 057601 (2006).

    Article  CAS  Google Scholar 

  14. Okamoto, S., Millis, A. J. & Spaldin, N. A. Lattice relaxation in oxide heterostructures: LaTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 97, 056802 (2006).

    Article  Google Scholar 

  15. Pentcheva, R. & Pickett, W. E. Charge localization or itineracy at LaAlO3/SrTiO3 interfaces: Hole polarons, oxygen vacancies, and mobile electrons. Phys. Rev. B 74, 035112 (2006).

    Article  Google Scholar 

  16. Tokura, Y. et al. Filling dependence of electronic properties on the verge of metal-Mott-insulator transitions in Sr1−xLaxTiO3 . Phys. Rev. Lett. 70, 2126–2129 (1993).

    Article  CAS  Google Scholar 

  17. Inaba, J. & Katsufuji, T. Large magnetoresistance in spin- and carrier-doped SrTiO3 . Phys. Rev. B 72, 052408 (2005).

    Article  Google Scholar 

  18. Herranz, G. et al. Co-doped (La,Sr)TiO3−δ: A high Curie temperature diluted magnetic system with large spin polarization. Phys. Rev. Lett. 96, 027207 (2006).

    Article  CAS  Google Scholar 

  19. Koster, G., Kropman, B. L., Rijnders, A. J. H. M., Blank, D. H. A. & Rogalla, H. Quasi-ideal strontium titanate crystal surfaces through formation of Sr-hydroxide. Appl. Phys. Lett. 73, 2020–2022 (1998).

    Article  Google Scholar 

  20. Rijnders, A. J. H. M., Koster, G., Blank, D. H. A. & Rogalla, H. In-situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure. Appl. Phys. Lett. 70, 1888–1890 (1997).

    Article  CAS  Google Scholar 

  21. Kalabukhov, A. S. et al. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75, 121404 (2007).

    Article  Google Scholar 

  22. Siemons, W. et al. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98, 196802 (2007).

    Article  Google Scholar 

  23. Hewson, A. C. The Kondo Problem to Heavy Fermions (Cambridge Univ. Press, Cambridge, 1993).

    Book  Google Scholar 

  24. De Haas, W. J. & Van den Berg, G. J. The electrical resistance of gold and silver at low temperatures. Physica 3, 440–449 (1936).

    Article  Google Scholar 

  25. Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

    Article  CAS  Google Scholar 

  26. Van der Wiel, W. G. et al. The Kondo effect in the unitary limit. Science 289, 2105–2108 (2000).

    Article  CAS  Google Scholar 

  27. Doniach, S. The Kondo lattice and weak antiferromagnetism. Physica B+C 91, 231–234 (1977).

    Article  Google Scholar 

  28. Pasupathy, A. N. et al. The Kondo effect in the presence of ferromagnetism. Science 306, 86–89 (2004).

    Article  CAS  Google Scholar 

  29. Uehara, M., Mori, S., Chen, C. H. & Cheong, S.-W. Percolative phase separation underlies colossal magnetoresistance in mixed-valence manganites. Nature 399, 560–563 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM, financially supported by the Netherlands Organization for Scientific Research (NWO)). A.B., D.B., H.H., G.R. and W.v.d.W. acknowledge additional support from NWO. The authors acknowledge J. Mannhart, A. J. Millis, R. Pentcheva and D. Winkler for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brinkman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary details and supplementary figure 1 (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brinkman, A., Huijben, M., van Zalk, M. et al. Magnetic effects at the interface between non-magnetic oxides. Nature Mater 6, 493–496 (2007). https://doi.org/10.1038/nmat1931

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1931

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing