Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers

Abstract

Organized arrays of anisotropic nanoparticles show electronic and optical properties that originate from the coupling of shape-dependent properties of the individual nanorods. The organization of nanorods in a controllable and predictable way provides a route to the fabrication of new materials and functional devices. So far, significant progress has been achieved in the self-assembly of nanorod arrays, yet the realization of a range of different structures requires changing the surface chemistry of the nanoparticles. We organized metal nanorods in structures with varying geometries by using a striking analogy between amphiphilic ABA triblock copolymers and the hydrophilic nanorods tethered with hydrophobic polymer chains at both ends. The self-assembly was tuneable and reversible and it was achieved solely by changing the solvent quality for the constituent blocks. This approach provides a new route to the organization of anisotropic nanoparticles by using the strategies that are established for the self-assembly of block copolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-assembly of polymer-tethered gold nanorods in selective solvents.
Figure 2: Formation of rings of triblocks in DMF/water mixtures.
Figure 3: Formation of linear chains in DMF/water mixture.
Figure 4: Absorption spectra of the linear nanochains.
Figure 5: Formation of nanospheres in the THF/water mixture.

Similar content being viewed by others

References

  1. Murphy, C. J. et al. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 109, 13857–13870 (2005).

    Article  CAS  Google Scholar 

  2. Murphy, C. J., Gole, A. M., Hunyadi, S. E. & Orendorff, C. J. One-dimensional colloidal gold and silver nanostructures. Inorg. Chem. 45, 7544–7554 (2006).

    Article  CAS  Google Scholar 

  3. Xia, Y. N. et al. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003).

    Article  CAS  Google Scholar 

  4. Jain, P. K., Eustis, S. & El-Sayed, M. A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 110, 18243–18253 (2006).

    Article  CAS  Google Scholar 

  5. Hu, J. T. et al. Linearly polarized emission from colloidal semiconductor quantum rods. Science 292, 2060–2063 (2001).

    Article  CAS  Google Scholar 

  6. Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002).

    Article  CAS  Google Scholar 

  7. Sudeep, P. K., Joseph, S. T. S. & Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 127, 6516–6517 (2005).

    Article  CAS  Google Scholar 

  8. Huang, X. H., El-Sayed, I. H., Qian, W. & El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 128, 2115–2120 (2006).

    Article  CAS  Google Scholar 

  9. Gorelikov, I., Field, L. M. & Kumacheva, E. Hybrid microgels photoresponsive in the near-infrared spectral range. J. Am. Chem. Soc. 126, 15938–15939 (2004).

    Article  CAS  Google Scholar 

  10. Salem, A. K., Searson, P. C. & Leong, K. W. Multifunctional nanorods for gene delivery. Nature Mater. 2, 668–671 (2003).

    Article  CAS  Google Scholar 

  11. Thomas, K. G., Barazzouk, S., Ipe, B. I., Joseph, S. T. S. & Kamat, P. V. Uniaxial plasmon coupling through longitudinal self-assembly of gold nanorods. J. Phys. Chem. B 108, 13066–13068 (2004).

    Article  CAS  Google Scholar 

  12. Joseph, S. T. S., Ipe, B. I., Pramod, P. & Thomas, K. G. Gold nanorods to nanochains: Mechanistic investigations on their longitudinal assembly using alpha, omega-alkanedithiols and interplasmon coupling. J. Phys. Chem. B 110, 150–157 (2006).

    Article  CAS  Google Scholar 

  13. Caswell, K. K., Wilson, J. N., Bunz, U. H. F. & Murphy, C. J. Preferential end-to-end assembly of gold nanorods by biotin-streptavidin connectors. J. Am. Chem. Soc. 125, 13914–13915 (2003).

    Article  CAS  Google Scholar 

  14. Dujardin, E., Hsin, L. B., Wang, C. R. C. & Mann, S. DNA-driven self-assembly of gold nanorods. Chem. Commun. 14, 1264–1265 (2001).

    Article  Google Scholar 

  15. Zhang, Q. L., Gupta, S., Emrick, T. & Russell, T. P. Surface-functionalized CdSe nanorods for assembly in diblock copolymer templates. J. Am. Chem. Soc. 128, 3898–3899 (2006).

    Article  CAS  Google Scholar 

  16. Correa-Duarte, M. A., Perez-Juste, J., Sanchez-Iglesias, A., Giersig, M. & Liz-Marzan, L. M. Aligning Au nanorods by using carbon nanotubes as templates. Angew. Chem. Int. Edn 44, 4375–4378 (2005).

    Article  CAS  Google Scholar 

  17. Gupta, S., Zhang, Q. L., Emrick, T. & Russell, T. P. “Self-corralling” nanorods under an applied electric field. Nano Lett. 6, 2066–2069 (2006).

    Article  CAS  Google Scholar 

  18. Ryan, K. M., Mastroianni, A., Stancil, K. A., Liu, H. T. & Alivisatos, A. P. Electric-field-assisted assembly of perpendicularly oriented nanorod superlattices. Nano Lett. 6, 1479–1482 (2006).

    Article  CAS  Google Scholar 

  19. Park, S., Lim, J. H., Chung, S. W. & Mirkin, C. A. Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348–351 (2004).

    Article  CAS  Google Scholar 

  20. Discher, D. E. & Eisenberg, A. Polymer vesicles. Science 297, 967–973 (2002).

    Article  CAS  Google Scholar 

  21. Yan, X. H., Liu, G. J. & Li, Z. Preparation and phase segregation of block copolymer nanotube multiblocks. J. Am. Chem. Soc. 126, 10059–10066 (2004).

    Article  CAS  Google Scholar 

  22. Knauss, D. M. & Huang, T. Z. Star-block-linear-block-star triblock (pom-pom) polystyrene by convergent living anionic polymerization. Macromolecules 35, 2055–2062 (2002).

    Article  CAS  Google Scholar 

  23. Nikoobakht, B. & El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957–1962 (2003).

    Article  CAS  Google Scholar 

  24. Zhulina, E. B., Birshtein, T. M. & Borisov, O. V. Curved polymer and polyelectrolyte brushes beyond the Daoud-Cotton model. Eur. Phys. J. E 20, 243–256 (2006).

    Article  CAS  Google Scholar 

  25. Wolf, B. A. & Willms, M. M. Measured and calculated solubility of polymers in mixed-solvents-Co-non-solvency. Makromol. Chem. 179, 2265–2277 (1978).

    Article  CAS  Google Scholar 

  26. Schulz, G. V. & Baumann, H. Thermodynamic properties expansion coefficient and viscosity value of polystyrene in tetrahydrofuran. Makromol. Chem. 114, 122–138 (1968).

    Article  CAS  Google Scholar 

  27. Rubinstein, M. & Colby, R. H. Polymer Physics (Oxford Univ. Press, Oxford, 2003).

    Google Scholar 

  28. Israelachvili, J. N. Intermolecular and Surface Forces (Academic, London, 1992).

    Google Scholar 

  29. Lairez, D., Adam, M., Carton, J. P. & Raspaud, E. Aggregation of telechelic triblock copolymers: From animals to flowers. Macromolecules 30, 6798–6809 (1997).

    Article  CAS  Google Scholar 

  30. Raspaud, E., Lairez, D., Adam, M. & Carton, J. P. Triblock copolymers in a selective solvent. 1. Aggregation process in dilute-solution. Macromolecules 27, 2956–2964 (1994).

    Article  CAS  Google Scholar 

  31. Tenbrinke, G. & Hadziioannou, G. Topological constraints and their influence on the properties of synthetic macromolecular systems. 2. Micelle formation of triblock copolymers. Macromolecules 20, 486–489 (1987).

    Article  CAS  Google Scholar 

  32. Wang, Y. M., Mattice, W. L. & Napper, D. H. Simulation of the self-assembly of symmetrical triblock copolymers in dilute-solution. Macromolecules 25, 4073–4077 (1992).

    Article  CAS  Google Scholar 

  33. De Gennes, P. G., Brochard-Wyart, F. & Quere, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004).

    Book  Google Scholar 

  34. Su, K. H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    Article  CAS  Google Scholar 

  35. Link, S., Mohamed, M. B. & El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 103, 3073–3077 (1999).

    Article  CAS  Google Scholar 

  36. Shan, J. et al. Amphiphilic gold nanoparticles grafted with poly(N-isopropylacrylamide) and polystyrene. Macromolecules 38, 2918–2926 (2005).

    Article  CAS  Google Scholar 

  37. Zubarev, E. R., Xu, J., Sayyad, A. & Gibson, J. D. Amphiphilicity-driven organization of nanoparticles into discrete assemblies. J. Am. Chem. Soc. 128, 15098–15099 (2006).

    Article  CAS  Google Scholar 

  38. Zubarev, E. R., Xu, J., Sayyad, A. & Gibson, J. D. Amphiphilic gold nanoparticles with V-shaped arms. J. Am. Chem. Soc. 128, 4958–4959 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

E.K. is grateful for Canada Research Chair financial support (NSERC Canada). G.C.W. gratefully acknowledges NSERC Canada (grant 312497), NSF (grant CHE-0404579), ONR (grant N00014-05-10765), ARO (grant W911NF-04-1-0191) and NIH (grant 1 R21 EB003101-01) for financially supporting this work. M.R. acknowledges financial support from NSF (grants CHE-0616925 and CTS-0609087), NIH (grant 1-R01-HL0775486A) and NASA (agreement NCC-1-02037). The authors thank Y. Wang for assistance in the synthesis of thiol-terminated polystyrene and D. Shirvanyants for assistance in image analysis.

Author information

Authors and Affiliations

Authors

Contributions

Z.N. was responsible for project planning, data analysis and experimental work, D.F. was responsible for experimental work, S.Z. was responsible for experimental work and data analysis, G.C.W. and M.R. were responsible for data analysis and interpretation and E.K. was responsible for project planning and data analysis and interpretation.

Corresponding author

Correspondence to Eugenia Kumacheva.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary information and figures S1-S5 (PDF 1724 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, Z., Fava, D., Kumacheva, E. et al. Self-assembly of metal–polymer analogues of amphiphilic triblock copolymers. Nature Mater 6, 609–614 (2007). https://doi.org/10.1038/nmat1954

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat1954

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing