Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-effect-modulated Seebeck coefficient in organic semiconductors

Abstract

Central to the operation of organic electronic and optoelectronic devices is the transport of charge and energy in the organic semiconductor, and to understand the nature and dynamics of charge carriers is at the focus of intense research efforts. As a basic transport property of solids, the Seebeck coefficient S provides deep insight as it is given by the entropy transported by thermally excited charge carriers and involves in the simplest case only electronic contributions where the transported entropy is determined by details of the band structure and scattering events. We have succeeded for the first time to measure the temperature- and carrier-density-dependent thermopower in single crystals and thin films of two prototypical organic semiconductors by a controlled modulation of the chemical potential in a field-effect geometry. Surprisingly, we find the Seebeck coefficient to be well within the range of the electronic contribution in conventional inorganic semiconductors, highlighting the similarity of transport mechanisms in organic and inorganic semiconductors. Charge and entropy transport is best described as band-like transport of quasiparticles that are subjected to scattering, with exponentially distributed in-gap trap states, and without further contributions to S.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the device cross-section and sample mounting stage.
Figure 2: Seebeck coefficient S in a high-quality rubrene SC-FET as a function of gate voltage at temperatures from 208 K to 294 K.
Figure 3: Variation of the Seebeck coefficient S as a function of field-induced carrier density Nind in organic FETs.
Figure 4: Measured and calculated transfer characteristics of two FETs.
Figure 5: Measured and calculated values of the Seebeck coefficient S in a high-quality rubrene single crystal at two temperatures.

Similar content being viewed by others

References

  1. Siegrist, T., Kloc, C., Laudise, R. A., Katz, H. E. & Haddon, R. C. Crystal growth, structure, and electronic band structure of α-4T polymorphs. Adv. Mater. 10, 379–382 (1998).

    Article  CAS  Google Scholar 

  2. Hummer, K. & Ambrosch-Draxl, C. Electronic properties of oligoacenes from first principles. Phys. Rev. B 72, 205205 (2005).

    Article  Google Scholar 

  3. da Silva Filho, D., Kim, E.-G. & Brédas, J.-L. Transport properties in the rubrene crystal: Electronic coupling and vibrational reorganization energy. Adv. Mater. 17, 1072–1076 (2005).

    Article  CAS  Google Scholar 

  4. Ortmann, F., Hannewald, K. & Bechstedt, F. Ab initio studies of structural, vibrational, and electronic properties of durene crystals and molecules. Phys. Rev. B 75, 195219 (2007).

    Article  Google Scholar 

  5. Hannewald, K. et al. Theory of polaron bandwidth narrowing in organic molecular crystals. Phys. Rev. B 69, 075211 (2004).

    Article  Google Scholar 

  6. Troisi, A. & Orlandi, G. Charge-transport regime of crystalline organic semiconductors: Diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).

    Article  Google Scholar 

  7. Silinsh, E. A. & Čápek, V. Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (AIP Press, New York, 1994).

    Google Scholar 

  8. Hannewald, K. & Bobbert, P. A. Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals. Phys. Rev. B 69, 075212 (2004).

    Article  Google Scholar 

  9. Hulea, I. N. et al. Tunable Fröhlich polarons in organic single-crystal transistors. Nature Mater. 5, 982–986 (2006).

    Article  CAS  Google Scholar 

  10. Devreese, J. T. Polarons. Encyclopedia Appl. Phys. 14, 383–409 (1996).

    Google Scholar 

  11. Emin, D. Enhanced Seebeck coefficient from carrier-induced vibrational softening. Phys. Rev. B 59, 6205–6210 (1999).

    Article  CAS  Google Scholar 

  12. von Mühlenen, A., Errien, N., Schaer, M., Bussac, M.-N. & Zuppiroli, L. Thermopower measurements on pentacene transistors. Phys. Rev. B 75, 115338 (2007).

    Article  Google Scholar 

  13. Geballe, T. H. & Hull, G. W. Seebeck effect in germanium. Phys. Rev. 94, 1134–1140 (1954).

    Article  CAS  Google Scholar 

  14. Brandt, M. S., Herbst, P., Angerer, H., Ambacher, O. & Stutzmann, M. Thermopower investigation of n- and p-type GaN. Phys. Rev. B 58, 7786–7791 (1998).

    Article  CAS  Google Scholar 

  15. Zuzok, R., Kaiser, A. B., Pukacki, W. & Roth, S. Thermoelectric power and conductivity of iodine-doped “new” polyacetylene. J. Chem. Phys. 95, 1270–1275 (1991).

    Article  CAS  Google Scholar 

  16. Meyer, J. P., Schlettwein, D., Wöhrle, D. & Jaeger, N. I. Charge transport in thin films of molecular semiconductors as investigated by measurements of thermoelectric power and electrical conductivity. Thin Solid Films 258, 317–324 (1995).

    Article  CAS  Google Scholar 

  17. Böhm, W., Fritz, T. & Leo, K. Charge transport in thin organic semiconducting films: Seebeck and field effect studies. Phys. Status Solidi A 160, 81–87 (1997).

    Article  Google Scholar 

  18. Pfeiffer, M., Beyer, A., Fritz, T. & Leo, K. Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: A systematic Seebeck and conductivity study. Appl. Phys. Lett. 73, 3202–3204 (1998).

    Article  CAS  Google Scholar 

  19. Maennig, B. et al. Controlled p-type doping of polycrystalline and amorphous organic layers: Self-consistent description of conductivity and field-effect mobility by a microscopic percolation model. Phys. Rev. B 64, 195208 (2001).

    Article  Google Scholar 

  20. El-Nahass, M., Bahabri, F. S., Ghamdi, A. A. & Al-Harbi, S. R. Structural and transport properties of copper phthalocyanine (CuPc) thin films. Egypt. J. Solids 25, 307–321 (2002).

    Google Scholar 

  21. Pfeiffer, M. et al. Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 4, 89–103 (2003).

    Article  CAS  Google Scholar 

  22. Wuesten, J., Ziegler, C. & Ertl, T. Electron transport in pristine and alkali metal doped perylene-3,4,9,10-tetracarboxylicdianhydride (PTCDA) thin films. Phys. Rev. B 74, 125205 (2006).

    Article  Google Scholar 

  23. Reddy, P., Jang, S.-Y., Segalman, R. A. & Majumdar, A. Thermoelectricity in molecular junctions. Science 315, 1568–1571 (2007).

    Article  CAS  Google Scholar 

  24. Hiroshige, Y., Ookawa, M. & Toshima, N. Thermoelectric figure-of-merit of iodine-doped copolymer of phenylenevinylene with dialkoxyphenylenevinylene. Synth. Met. 157, 467–474 (2007).

    Article  CAS  Google Scholar 

  25. Cai, J. & Mahan, G. D. Effective Seebeck coefficient for semiconductors. Phys. Rev. B 74, 075201 (2006).

    Article  Google Scholar 

  26. Fritzsche, H. A general expression for the thermoelectric power. Solid State Commun. 9, 1813–1815 (1971).

    Article  CAS  Google Scholar 

  27. Mott, N. F. & Davis, E. A. Electronic Processes in Non-Crystalline Materials (Clarendon, Oxford, 1971).

    Google Scholar 

  28. Herring, C. Theory of the thermoelectric power of semiconductors. Phys. Rev. 96, 1163–1187 (1954).

    Article  CAS  Google Scholar 

  29. Seeger, K. Semiconductor Physics (Springer, Berlin, 1973).

    Book  Google Scholar 

  30. Callaerts, R., Nagels, P. & Denayer, M. Thermopower in amorphous As2Se3 . Phys. Lett. A 38, 15–16 (1972).

    Article  CAS  Google Scholar 

  31. Kalb, W. L., Mathis, T., Haas, S., Stassen, A. F. & Batlogg, B. Organic small molecule field-effect transistors with Cytop gate dielectric: Eliminating gate bias stress effects. Appl. Phys. Lett. 90, 092104 (2007).

    Article  Google Scholar 

  32. Takeya, J. et al. Field-induced charge transport at the surface of pentacene single crystals: A method to study charge dynamics of two-dimensional electron systems in organic crystals. J. Appl. Phys. 94, 5800–5804 (2003).

    Article  CAS  Google Scholar 

  33. de Boer, R. W. I., Klapwijk, T. M. & Morpurgo, A. F. Field-effect transistors on tetracene single crystals. Appl. Phys. Lett. 83, 4345–4347 (2003).

    Article  CAS  Google Scholar 

  34. Oberhoff, D., Pernstich, K. P., Gundlach, D. J. & Batlogg, B. Arbitrary density of states in an organic thin-film field-effect transistor model and application to pentacene devices. IEEE Trans. Electron Devices 54, 17–25 (2007).

    Article  CAS  Google Scholar 

  35. Schein, L. B. & McGhie, A. R. Band-hopping mobility transition in naphthalene and deuterated naphthalene. Phys. Rev. B 20, 1631–1639 (1979).

    Article  CAS  Google Scholar 

  36. Warta, W. & Karl, N. Hot holes in naphthalene: High, electric-field-dependent mobilities. Phys. Rev. B 32, 1172–1182 (1985).

    Article  CAS  Google Scholar 

  37. Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).

    Article  CAS  Google Scholar 

  38. Ostroverkhova, O. et al. Bandlike transport in pentacene and functionalized pentacene thin films revealed by subpicosecond transient photoconductivity measurements. Phys. Rev. B 71, 035204 (2005).

    Article  Google Scholar 

  39. Marumoto, K., Kuroda, S., Takenobu, T. & Iwasa, Y. Spatial extent of wave functions of gate-induced hole carriers in pentacene field-effect devices as investigated by electron spin resonance. Phys. Rev. Lett. 97, 256603 (2006).

    Article  Google Scholar 

  40. Fischer, M., Dressel, M., Gompf, B., Tripathi, A. K. & Pflaum, J. Infrared spectroscopy on the charge accumulation layer in rubrene single crystals. Appl. Phys. Lett. 89, 182103 (2006).

    Article  Google Scholar 

  41. Koller, G. et al. Intra- and intermolecular band dispersion in an organic crystal. Science 317, 351–355 (2007).

    Article  CAS  Google Scholar 

  42. Takeya, J. et al. In-crystal and surface charge transport of electric-field-induced carriers in organic single-crystal semiconductors. Phys. Rev. Lett. 98, 196804 (2007).

    Article  CAS  Google Scholar 

  43. Li, Z. Q. et al. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors. Phys. Rev. Lett. 99, 016403 (2007).

    Article  CAS  Google Scholar 

  44. Casu, M. B. et al. Investigation of polarization effects in organic thin films by surface core-level shifts. Phys. Rev. B 76, 193311 (2007).

    Article  Google Scholar 

  45. Horowitz, G. Semiconducting Polymers: Chemistry, Physics and Engineering Vol. 2 (Wiley-VCH, Weinheim, 2007).

    Google Scholar 

  46. Krellner, C. et al. Density of bulk trap states in organic semiconductor crystals: Discrete levels induced by oxygen in rubrene. Phys. Rev. B 75, 245115 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank K. Mattenberger and H.-P. Staub for technical support and A. Stassen, R. Häusermann, S. Haas for crystal growth. Special thanks are given to T. Mathis for preparation and characterization of a Cytop layer and to W. Kalb for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Pernstich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pernstich, K., Rössner, B. & Batlogg, B. Field-effect-modulated Seebeck coefficient in organic semiconductors. Nature Mater 7, 321–325 (2008). https://doi.org/10.1038/nmat2120

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2120

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing