Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gated proton transport in aligned mesoporous silica films

Abstract

Modulated proton transport plays significant roles in biological processes1 such as ATP synthesis2,3 as well as in technologically important applications including, for example, hydrogen fuel cells4,5. The state-of-the-art proton-exchange membrane is the sulphonated tetrafluoroethylene copolymer Nafion developed by DuPont in the late 1960s, with a high proton conductivity6. However, actively switchable proton conduction, a functional mimic of the ion transport within a cell membrane, has yet to be realized. Herein, we report the electrostatic gating of proton transport within aligned mesoporous silica thin film. It is observed that surface-charge-mediated transport is dominant at low proton concentrations. We have further demonstrated that the proton conduction can be actively modulated by two–fourfold with a gate voltage as low as 1 V. Such artificial gatable ion transport media could have potential applications in nanofluidic chemical processors, biomolecular separation and electrochemical energy conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of large-scale aligned mesopore thin films.
Figure 2: Concentration dependence of proton and ion transport.
Figure 3: Gate modulation of proton conduction.
Figure 4: pH dependence of gate modulation of proton transport.

Similar content being viewed by others

References

  1. Decoursey, T. E. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83, 475–579 (2003).

    Article  CAS  Google Scholar 

  2. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Direct observation of the rotation of F-1-ATPase. Nature 386, 299–302 (1997).

    Article  CAS  Google Scholar 

  3. Elston, T., Wang, H. Y. & Oster, G. Energy transduction in ATP synthase. Nature 391, 510–513 (1998).

    Article  CAS  Google Scholar 

  4. Wang, C. Y. Fundamental models for fuel cell engineering. Chem. Rev. 104, 4727–4765 (2004).

    Article  CAS  Google Scholar 

  5. Kreuer, K. D. Proton conductivity: Materials and applications. Chem. Mater. 8, 610–641 (1996).

    Article  CAS  Google Scholar 

  6. Mauritz, K. A. & Moore, R. B. State of understanding of Nafion. Chem. Rev. 104, 4535–4585 (2004).

    Article  CAS  Google Scholar 

  7. Stein, D., Kruithof, M. & Dekker, C. Surface-charge-governed ion transport in nanofluidic channels. Phys. Rev. Lett. 93, 035901 (2004).

    Article  Google Scholar 

  8. Daiguji, H., Yang, P. D. & Majumdar, A. Ion transport in nanofluidic channels. Nano Lett. 4, 137–142 (2004).

    Article  CAS  Google Scholar 

  9. Pu, Q. S., Yun, J. S., Temkin, H. & Liu, S. R. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  10. van der Heyden, F. H. J., Bonthuis, D. J., Stein, D., Meyer, C. & Dekker, C. Electrokinetic energy conversion efficiency in nanofluidic channels. Nano Lett. 6, 2232–2237 (2006).

    Article  CAS  Google Scholar 

  11. van der Heyden, F. H. J., Stein, D., Besteman, K., Lemay, S. G. & Dekker, C. Charge inversion at high ionic strength studied by streaming currents. Phys. Rev. Lett. 96, 224502 (2006).

    Article  Google Scholar 

  12. Karnik, R., Duan, C. H., Castelino, K., Daiguji, H. & Majumdar, A. Rectification of ionic current in a nanofluidic diode. Nano Lett. 7, 547–551 (2005).

    Article  Google Scholar 

  13. Vlassiouk, I. & Siwy, Z. Nanofluidic diode. Nano Lett. 7, 552–556 (2007).

    Article  CAS  Google Scholar 

  14. Siwy, Z., Heins, E., Harrell, C. C., Kohli, P. & Martin, C. R. Conical-nanotube ion-current rectifiers: The role of surface charge. J. Am. Chem. Soc. 126, 10850–10851 (2004).

    Article  CAS  Google Scholar 

  15. Siwy, Z. & Fulinski, A. Fabrication of a synthetic nanopore ion pump. Phys. Rev. Lett. 89, 198103 (2002).

    Article  CAS  Google Scholar 

  16. Siwy, Z., Kosinska, I. D., Fulinski, A. & Martin, C. R. Asymmetric diffusion through synthetic nanopores. Phys. Rev. Lett. 94, 048102 (2005).

    Article  CAS  Google Scholar 

  17. Karnik, R., Castelino, K., Fan, R., Yang, P. & Majumdar, A. Effects of biological reactions and modifications on conductance of nanofluidic channels. Nano Lett. 5, 1638–1642 (2005).

    Article  CAS  Google Scholar 

  18. Karnik, R. et al. Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett. 5, 943–948 (2005).

    Article  CAS  Google Scholar 

  19. Daiguji, H., Yang, P. D., Szeri, A. J. & Majumdar, A. Electrochemomechanical energy conversion in nanofluidic channels. Nano Lett. 4, 2315–2321 (2004).

    Article  CAS  Google Scholar 

  20. Goldberger, J., Fan, R. & Yang, P. D. Inorganic nanotubes: A novel platform for nanofluidics. Accounts Chem. Res. 39, 239–248 (2006).

    Article  CAS  Google Scholar 

  21. Fan, R., Yue, M., Karnik, R., Majumdar, A. & Yang, P. D. Polarity switching and transient responses in single nanotube nanofluidic transistors. Phys. Rev. Lett. 95, 086607 (2005).

    Article  Google Scholar 

  22. Nishizawa, M., Menon, V. P. & Martin, C. R. Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268, 700–702 (1995).

    Article  CAS  Google Scholar 

  23. Martin, C. R., Nishizawa, M., Jirage, K., Kang, M. S. & Lee, S. B. Controlling ion-transport selectivity in gold nanotubule membranes. Adv. Mater. 13, 1351–1362 (2001).

    Article  CAS  Google Scholar 

  24. Reisner, W. et al. Statics and dynamics of single DNA molecules confined in nanochannels. Phys. Rev. Lett. 94, 196101 (2005).

    Article  Google Scholar 

  25. Tegenfeldt, J. O. et al. The dynamics of genomic-length DNA molecules in 100-nm channels. Proc. Natl Acad. Sci. USA 101, 10979–10983 (2004).

    Article  CAS  Google Scholar 

  26. Cao, H. et al. Fabrication of 10 nm enclosed nanofluidic channels. Appl. Phys. Lett. 81, 174–176 (2002).

    Article  CAS  Google Scholar 

  27. Mao, P. & Han, J. Y. Fabrication and characterization of 20 nm planar nanofluidic channels by glass–glass and glass–silicon bonding. Lab Chip 5, 837–844 (2005).

    Article  CAS  Google Scholar 

  28. Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  CAS  Google Scholar 

  29. Miyata, H. et al. Silica films with a single-crystalline mesoporous structure. Nature Mater. 3, 651–656 (2004).

    Article  CAS  Google Scholar 

  30. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50–300 angstrom pores. Science 279, 548–552 (1998).

    Article  CAS  Google Scholar 

  31. Zhao, D. et al. Continuous mesoporous silica films with highly ordered large pore structures. Adv. Mater. 10, 1380 (1998).

    Article  CAS  Google Scholar 

  32. Zhao, D. Y., Sun, J. Y., Li, Q. Z. & Stucky, G. D. Morphological control of highly ordered mesoporous silica SBA-15. Chem. Mater. 12, 275 (2000).

    Article  CAS  Google Scholar 

  33. Wu, C. W., Ohsuna, T., Edura, T. & Kuroda, K. Orientational control of hexagonally packed silica mesochannels in lithographically designed confined nanospaces. Angew. Chem. Int. Edn 46, 5364–5368 (2007).

    Article  CAS  Google Scholar 

  34. Wu, C. W., Yamauchi, Y., Ohsuna, T. & Kuroda, K. Structural study of highly ordered mesoporous silica thin films and replicated Pt nanowires by high-resolution scanning electron microscopy (HRSEM). J. Mater. Chem. 16, 3091–3098 (2006).

    Article  CAS  Google Scholar 

  35. Yamauchi, Y. et al. Magnetically induced orientation of mesochannels in 2D-hexagonal mesoporous silica films. J. Mater. Chem. 16, 3693–3700 (2006).

    Article  CAS  Google Scholar 

  36. Smeets, R. M. M. et al. Salt dependence of ion transport and DNA translocation through solid-state nanopores. Nano Lett. 6, 89–95 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Air Force Office of Scientific Research, and the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peidong Yang.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, R., Huh, S., Yan, R. et al. Gated proton transport in aligned mesoporous silica films. Nature Mater 7, 303–307 (2008). https://doi.org/10.1038/nmat2127

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing