Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Materials for electrochemical capacitors

Abstract

Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specific power against specific energy, also called a Ragone plot, for various electrical energy storage devices.
Figure 2: Carbon structures used as active materials for double layer capacitors.
Figure 3: Electrochemical capacitors.
Figure 4: Specific capacitance normalized by SSA as a function of pore size for different carbon samples.
Figure 5: Normalized capacitance change as a function of the pore size of carbon-derived-carbide samples.
Figure 6: Cyclic voltammetry.
Figure 7: Possible strategies to improve both energy and power densities for electrochemical capacitors.

Similar content being viewed by others

References

  1. Conway, B. E. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Kluwer, 1999).

    Book  Google Scholar 

  2. Service, R. F. New 'supercapacitor' promises to pack more electrical punch. Science 313, 902–905 (2006).

    Article  CAS  Google Scholar 

  3. Tarascon, J.-M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  CAS  Google Scholar 

  4. Brodd, R. J. et al. Batteries, 1977 to 2002. J. Electrochem. Soc. 151, K1–K11 (2004).

    Article  CAS  Google Scholar 

  5. Armand, M. & Tarascon, J.-M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  6. Armand, M. & Johansson, P. Novel weakly coordinating heterocyclic anions for use in lithium batteries. J. Power Sources 178, 821–825 (2008).

    Article  CAS  Google Scholar 

  7. Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).

    Article  CAS  Google Scholar 

  8. US Department of Energy. Basic Research Needs for Electrical Energy Storage <www.sc.doe.gov/bes/reports/abstracts.html#EES2007> (2007).

  9. Kötz, R. & Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 45, 2483–2498 (2000).

    Article  Google Scholar 

  10. Miller, J. R. & Burke, A. F. Electrochemical capacitors: Challenges and opportunities for real-world applications. Electrochem. Soc. Interf. 17, 53–57 (2008).

    CAS  Google Scholar 

  11. Pandolfo, A. G. & Hollenkamp, A. F. Carbon properties and their role in supercapacitors. J. Power Sources 157, 11–27 (2006).

    Article  CAS  Google Scholar 

  12. Gogotsi, Y. (ed.) Carbon Nanomaterials (CRC, 2006).

    Book  Google Scholar 

  13. Kyotani, T., Chmiola, J. & Gogotsi, Y. in Carbon Materials for Electrochemical Energy Storage Systems (eds Beguin, F. & Frackowiak, E.) Ch. 13 (CRC/Taylor and Francis, in the press).

  14. Futaba, D. N. et al. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nature Mater. 5, 987–994 (2006).

    Article  CAS  Google Scholar 

  15. Portet, C., Chmiola, J., Gogotsi, Y., Park, S. & Lian, K. Electrochemical characterizations of carbon nanomaterials by the cavity microelectrode technique. Electrochim. Acta, 53, 7675–7680 (2008).

    Article  CAS  Google Scholar 

  16. Yang, C.-M. et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns. J. Am. Chem. Soc. 129, 20–21 (2007).

    Article  CAS  Google Scholar 

  17. Niu, C., Sichel, E. K., Hoch, R., Moy, D. & Tennent, H. High power electrochemical capacitors based on carbon nanotube electrodes. Appl. Phys. Lett. 70, 1480 (1997).

    Article  CAS  Google Scholar 

  18. Azaïs, P. et al. Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171, 1046–1053 (2007).

    Article  Google Scholar 

  19. Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F. & Chesneau, M. Studies and characterization of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109–116 (2001).

    Article  CAS  Google Scholar 

  20. Shi, H. Activated carbons and double layer capacitance. Electrochim. Acta 41, 1633–1639 (1995).

    Article  Google Scholar 

  21. Qu, D. & Shi, H. Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998).

    Article  CAS  Google Scholar 

  22. Qu, D. Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403–411 (2002).

    Article  CAS  Google Scholar 

  23. Kim, Y. J. et al. Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons. Carbon 42, 1491 (2004).

    Article  CAS  Google Scholar 

  24. Izutsu, K. Electrochemistry in Nonaqueous Solution (Wiley, 2002).

    Book  Google Scholar 

  25. Marcus, Y. Ion Solvation (Wiley, 1985).

    Google Scholar 

  26. Jurewicz, K. et al. Capacitance properties of ordered porous carbon materials prepared by a templating procedure. J. Phys. Chem. Solids 65, 287 (2004).

    Article  CAS  Google Scholar 

  27. Fernández, J. A. et al. Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors. J. Power Sources 175, 675 (2008).

    Article  Google Scholar 

  28. Fuertes, A. B., Lota, G., Centeno, T. A. & Frackowiak, E. Templated mesoporous carbons for supercapacitor application. Electrochim. Acta 50, 2799 (2005).

    Article  CAS  Google Scholar 

  29. Salitra, G., Soffer, A., Eliad, L., Cohen, Y. & Aurbach, D. Carbon electrodes for double-layer capacitors. I. Relations between ion and pore dimensions. J. Electrochem. Soc. 147, 2486–2493 (2000).

    Article  CAS  Google Scholar 

  30. Vix-Guterl, C. et al. Electrochemical energy storage in ordered porous carbon materials. Carbon 43, 1293–1302 (2005).

    Article  CAS  Google Scholar 

  31. Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves. Langmuir 21, 3198–3202 (2005).

    Article  CAS  Google Scholar 

  32. Eliad, L. et al. Assessing optimal pore-to-ion size relations in the design of porous poly(vinylidene chloride) carbons for EDL capacitors. Appl. Phys. A 82, 607–613 (2006).

    Article  CAS  Google Scholar 

  33. Arulepp, M. et al. The advanced carbide-derived carbon based supercapacitor. J. Power Sources 162, 1460–1466 (2006).

    Article  CAS  Google Scholar 

  34. Arulepp, M. et al. Influence of the solvent properties on the characteristics of a double layer capacitor. J. Power Sources 133, 320–328 (2004).

    Article  CAS  Google Scholar 

  35. Raymundo-Pinero, E., Kierzek, K., Machnikowski, J. & Beguin, F. Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44, 2498–2507 (2006).

    Article  CAS  Google Scholar 

  36. Janes, A. & Lust, E. Electrochemical characteristics of nanoporous carbide-derived carbon materials in various nonaqueous electrolyte solutions. J. Electrochem. Soc. 153, A113–A116 (2006).

    Article  CAS  Google Scholar 

  37. Shanina, B. D. et al. A study of nanoporous carbon obtained from ZC powders (Z = Si, Ti, and B). Carbon 41, 3027–3036 (2003).

    Article  CAS  Google Scholar 

  38. Chmiola, J., Dash, R., Yushin, G. & Gogotsi, Y. Effect of pore size and surface area of carbide derived carbon on specific capacitance. J. Power Sources 158, 765–772 (2006).

    Article  CAS  Google Scholar 

  39. Dash, R. et al. Titanium carbide derived nanoporous carbon for energy-related applications. Carbon 44, 2489–2497 (2006).

    Article  CAS  Google Scholar 

  40. Urbonaite, S. et al. EELS studies of carbide derived carbons. Carbon 45, 2047–2053 (2007).

    Article  CAS  Google Scholar 

  41. Gogotsi, Y. et al. Nanoporous carbide-derived carbon with tunable pore size. Nature Mater. 2, 591–594 (2003).

    Article  CAS  Google Scholar 

  42. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore size below 1 nm. Science 313, 1760–1763 (2006).

    Article  CAS  Google Scholar 

  43. Huang, J. S., Sumpter, B. G. & Meunier, V. Theoretical model for nanoporous carbon supercapacitors. Angew. Chem. Int. Ed. 47, 520–524 (2008).

    Article  CAS  Google Scholar 

  44. Huang, J., Sumpter, B. G. & Meunier, V. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbons, and electrolytes. Chem. Eur. J. 14, 6614–6626 (2008).

    Article  CAS  Google Scholar 

  45. Chmiola, J., Largeot, C., Taberna, P.-L., Simon, P. & Gogotsi, Y. Desolvation of ions in subnanometer pores, its effect on capacitance and double-layer theory. Angew. Chem. Int. Ed. 47, 3392–3395 (2008).

    Article  CAS  Google Scholar 

  46. Largeot, C. et al. Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130, 2730–2731 (2008).

    Article  CAS  Google Scholar 

  47. Weigand, G., Davenport, J. W., Gogotsi, Y. & Roberto, J. in Scientific Impacts and Opportunities for Computing Ch. 5, 29–35 (DOE Office of Science, 2008).

    Google Scholar 

  48. Wu, N.-L. Nanocrystalline oxide supercapacitors. Mater. Chem. Phys. 75, 6–11 (2002).

    Article  CAS  Google Scholar 

  49. Brousse, T. et al. Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors. J. Electrochem. Soc. 153, A2171–A2180 (2006).

    Article  CAS  Google Scholar 

  50. Rudge, A., Raistrick, I., Gottesfeld, S. & Ferraris, J. P. Conducting polymers as active materials in electrochemical capacitors. J. Power Sources 47, 89–107 (1994).

    Article  CAS  Google Scholar 

  51. Zheng, J. P. & Jow, T. R. High energy and high power density electrochemical capacitors. J. Power Sources 62, 155–159 (1996).

    Article  CAS  Google Scholar 

  52. Lee, H. Y. & Goodenough, J. B. Supercapacitor behavior with KCl electrolyte. J. Solid State Chem. 144, 220–223 (1999).

    Article  CAS  Google Scholar 

  53. Laforgue, A., Simon, P. & Fauvarque, J.-F. Chemical synthesis and characterization of fluorinated polyphenylthiophenes: application to energy storage. Synth. Met. 123, 311–319 (2001).

    Article  CAS  Google Scholar 

  54. Naoi, K., Suematsu, S. & Manago, A. Electrochemistry of poly(1,5-diaminoanthraquinone) and its application in electrochemical capacitor materials. J. Electrochem. Soc. 147, 420–426 (2000).

    Article  CAS  Google Scholar 

  55. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M. & Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  56. Choi, D., Blomgren, G. E. & Kumta, P. N. Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors. Adv. Mater. 18, 1178–1182 (2006).

    Article  CAS  Google Scholar 

  57. Machida, K., Furuuchi, K., Min, M. & Naoi, K. Mixed proton–electron conducting nanocomposite based on hydrous RuO2 and polyaniline derivatives for supercapacitors. Electrochemistry 72, 402–404 (2004).

    CAS  Google Scholar 

  58. Toupin, M., Brousse, T. & Belanger, D. Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004).

    Article  CAS  Google Scholar 

  59. Sugimoto, W., Iwata, H., Yasunaga, Y., Murakami, Y. & Takasu, Y. Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. Angew. Chem. Int. Ed. 42, 4092–4096 (2003).

    Article  CAS  Google Scholar 

  60. Miller, J. M., Dunn, B., Tran, T. D. & Pekala, R. W. Deposition of ruthenium nanoparticles on carbon aerogels for high energy density supercapacitor electrodes. J. Electrochem. Soc. 144, L309–L311 (1997).

    Article  CAS  Google Scholar 

  61. Min, M., Machida, K., Jang, J. H. & Naoi, K. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 153, A334–A338 (2006).

    Article  CAS  Google Scholar 

  62. Wang, Y., Takahashi, K., Lee, K. H. & Cao, G. Z. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16, 1133–1144 (2006).

    Article  CAS  Google Scholar 

  63. Naoi, K. & Simon, P. New materials and new configurations for advanced electrochemical capacitors. Electrochem. Soc. Interf. 17, 34–37 (2008).

    CAS  Google Scholar 

  64. Fischer, A. E., Pettigrew, K. A., Rolison, D. R., Stroud, R. M. & Long, J. W. Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: Implications for electrochemical capacitors. Nano Lett. 7, 281–286 (2007).

    Article  CAS  Google Scholar 

  65. Kazaryan, S. A., Razumov, S. N., Litvinenko, S. V., Kharisov, G. G. & Kogan, V. I. Mathematical model of heterogeneous electrochemical capacitors and calculation of their parameters. J. Electrochem. Soc. 153, A1655–A1671 (2006).

    Article  CAS  Google Scholar 

  66. Amatucci, G. G., Badway, F. & DuPasquier, A. in Intercalation Compounds for Battery Materials (ECS Proc. Vol. 99) 344–359 (Electrochemical Society, 2000).

    Google Scholar 

  67. Burke, A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53, 1083–1091 (2007).

    Article  CAS  Google Scholar 

  68. Portet, C., Taberna, P. L., Simon, P. & Laberty-Robert, C. Modification of Al current collector surface by sol-gel deposit for carbon-carbon supercapacitor applications. Electrochim. Acta 49, 905–912 (2004).

    Article  CAS  Google Scholar 

  69. Talapatra, S. et al. Direct growth of aligned carbon nanotubes on bulk metals. Nature Nanotech. 1, 112–116 (2006).

    Article  CAS  Google Scholar 

  70. Taberna, L., Mitra, S., Poizot, P., Simon, P. & Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nature Mater. 5, 567–573 (2006).

    Article  CAS  Google Scholar 

  71. Jang, J. H., Machida, K., Kim, Y. & Naoi, K. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances. Electrochim. Acta. 52, 1733 (2006).

    Article  CAS  Google Scholar 

  72. Cambaz, Z. G., Yushin, G., Osswald, S., Mochalin, V. & Gogotsi, Y. Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46, 841–849 (2008).

    Article  CAS  Google Scholar 

  73. Tsuda, T. & Hussey, C. L. Electrochemical applications of room-temperature ionic liquids. Electrochem. Soc. Interf. 16, 42–49 (2007).

    Google Scholar 

  74. Balducci, A. et al. High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte. J. Power Sources 165, 922–927 (2007).

    Article  CAS  Google Scholar 

  75. Balducci, A. et al. Cycling stability of a hybrid activated carbon//poly(3-methylthiophene) supercapacitor with N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquid as electrolyte. Electrochim. Acta 50, 2233–2237 (2005).

    Article  CAS  Google Scholar 

  76. Balducci, A., Soavi, F. & Mastragostino, M. The use of ionic liquids as solvent-free green electrolytes for hybrid supercapacitors. Appl. Phys. A 82, 627–632 (2006).

    Article  CAS  Google Scholar 

  77. Endres, F., MacFarlane, D. & Abbott, A. (eds) Electrodeposition from Ionic Liquids (Wiley-VCH, 2008).

    Book  Google Scholar 

  78. Faggioli, E. et al. Supercapacitors for the energy management of electric vehicles. J. Power Sources 84, 261–269 (1999).

    Article  CAS  Google Scholar 

  79. Chmiola, J. & Gogotsi, Y. Supercapacitors as advanced energy storage devices. Nanotechnol. Law Bus. 4, 577–584 (2007).

    Google Scholar 

  80. Portet, C., Yushin, G. & Gogotsi, Y. Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our students and collaborators, including J. Chmiola, C. Portet, R. Dash and G. Yushin (Drexel University), P. L. Taberna and C. Largeot (Université Paul Sabatier), and J. E. Fischer (University of Pennsylvania) for experimental help and discussions, H. Burnside (Drexel University) for editing the manuscript and S. Cassou (Toulouse) for help with illustrations. This work was partially funded through the Department of Energy, Office of Basic Energy Science, grant DE-FG01-05ER05-01, and through the Délégation Générale pour l'Armement.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, P., Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater 7, 845–854 (2008). https://doi.org/10.1038/nmat2297

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2297

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing